Journal of Logic, Language and Information

, Volume 25, Issue 3–4, pp 299–333 | Cite as

Reflecting on Social Influence in Networks

  • Zoé Christoff
  • Jens Ulrik HansenEmail author
  • Carlo Proietti


In many social contexts, social influence seems to be inescapable: the behavior of others influences us to modify ours, and vice-versa. However, social psychology is full of examples of phenomena where individuals experience a discrepancy between their public behavior and their private opinion. This raises two central questions. First, how does an individual reason about the behavior of others and their private opinions in situations of social influence? And second, what are the laws of the resulting information dynamics? In this paper, we address these questions by introducing a formal framework for representing reasoning about an individual’s private opinions and public behavior under the dynamics of social influence in social networks. Moreover, we dig deeper into the involved information dynamics by modeling how individuals can learn about each other based on this reasoning. This compels us to introduce a new formal notion of reflective social influence. Finally, we initialize the work on proof theory and automated reasoning for our framework by introducing a sound and complete tableaux system for a fragment of our logic. Furthermore, this constitutes the first tableau system for the “Facebook logic” of J. Seligman, F. Liu, and P. Girard.


Social networks Modal logic Hybrid logic Opinion dynamics Social influence Tableau systems 



Zoé Christoff acknowledges support for this research from EPSRC (Grant EP/M015815/1, “Foundations of Opinion Formation in Autonomous Systems”), as well as from the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement No. 283963. Carlo Proietti is sponsored by the Swedish Research Council (VR) through the project “Logical modelling of collective attitudes and their dynamics”.


  1. Abelson, R. P. (1964). Mathematical models of the distribution of attitudes under controversy. In N. Frederiksen, & H. Gulliksen (Eds.), Contributions to mathematical psychology (pp. 142–160). New York, NY: Holt, Reinhart & Winston.Google Scholar
  2. Acemoglu, D., & Ozdaglar, A. (2011). Opinion dynamics and learning in social networks. Dynamic Games and Applications, 1(1), 3–49. doi: 10.1007/s13235-010-0004-1.CrossRefGoogle Scholar
  3. Andersen, H. C. (1837). Kejserens nye klæder (the emperors new clothes). In Eventyr, fortalte for Børn. Tredie Hefte (Fairy Tales Told for Children. Third Collection), C. A. Reitzel, Copenhagen.Google Scholar
  4. Areces, C., & ten Cate, B. (2007). Hybrid logics. In P. Blackburn, J. van Benthem, & F. Wolter (Eds.), Handbook of modal logic (pp. 821–868). Amsterdam: Elsevier.CrossRefGoogle Scholar
  5. Aucher, G., Balbiani, P., del Cerro, L. F., & Herzig, A. (2009). Global and local graph modifiers. Electronic Notes in Theoretical Computer Science 231, 293–307. doi: 10.1016/j.entcs.2009.02.042. Proceedings of the 5th workshop on methods for modalities (M4M5 2007)
  6. Axelrod, R. (1997). Complexity of cooperation: Agent-based models of competition and collaboration. Princeton, NJ: Princeton University Press.Google Scholar
  7. Balbiani, P., Ditmarsch, H. V., Herzig, A., & de Lima, T. (2010). Tableaux for public announcement logic. Journal of Logic and Computation, 20(1), 55–76. doi: 10.1093/logcom/exn060.CrossRefGoogle Scholar
  8. Baltag, A., Christoff, Z., Hansen, J. U., & Smets, S. (2013). Logical models of informational cascades. In J. van Benthem & F. Lui (Eds.), Logic across the university: Foundations and applications, studies in logic (pp. 405–432). London: College Publications.Google Scholar
  9. Bikhchandani, S., Hirshleifer, D., & Welch, I. (1992). A theory of fads, fashion, custom, and cultural change as informational cascades. Journal of Political Economy, 100(5), 992–1026.CrossRefGoogle Scholar
  10. Bikhchandani, S., Hirshleifer, D., & Welch, I. (1998). Learning from the behavior of others: Conformity, fads, and informational cascades. Journal of Economic Perspectives, 12(3), 151–170.CrossRefGoogle Scholar
  11. Bolander, T., & Blackburn, P. (2007). Termination for hybrid tableaus. Journal of Logic and Computation, 17(3), 517–554.CrossRefGoogle Scholar
  12. Centola, D., Willer, R., & Macy, M. (2005). The Emperor’s dilemma. A computational model of self-enforcing norms. American Journal of Sociology, 110(4), 1009–1040.CrossRefGoogle Scholar
  13. Christoff, Z., & Hansen, J. U. (2013). A two-tiered formalization of social influence. In H. Huang, D. Grossi, & O. Roy (Eds.), Logic, rationality and interaction, proceedings of the fourth international workshop (LORI 2013), Lecture notes in computer science (Vol. 8196, pp. 68–81). Springer.Google Scholar
  14. Christoff, Z., & Hansen, J. U. (2015). A logic for diffusion in social networks. Journal of Applied Logic, 13(1), 48–77. doi: 10.1016/j.jal.2014.11.011.CrossRefGoogle Scholar
  15. DeGroot, M. H. (1974). Reaching a consensus. Journal of the American Statistical Association, 69(345), 118–121.CrossRefGoogle Scholar
  16. Easley, D., & Kleinberg, J. (2010). Networks, crowds, and markets: Reasoning about a highly connected world. New York, NY: Cambridge University Press.CrossRefGoogle Scholar
  17. Fitting, M. (2012). Prefixed tableaus and nested sequents. Annals of Pure and Applied Logic, 163(3), 291–313. doi: 10.1016/j.apal.2011.09.004.CrossRefGoogle Scholar
  18. Granovetter, M. (1978). Threshold models of collective behavior. American Journal of Sociology, 83, 1420–1443.CrossRefGoogle Scholar
  19. Halbesleben, J. R. B., Wheeler, A. R., & Buckley, M. R. (2007). Understanding pluralistic ignorance: Application and theory. Journal of Managerial Psychology, 22(1), 65–83.CrossRefGoogle Scholar
  20. Jackson, M. O. (2010). Social and economic networks. Princeton: Princeton University Press.Google Scholar
  21. Kennedy, J., & Eberhart, R. C. (2001). Swarm intelligence. San Francisco: Morgan Kauffmann.Google Scholar
  22. Kooi, B., & Renne, B. (2011). Arrow update logic. The Review of Symbolic Logic, 4, 536–559. doi: 10.1017/S1755020311000189.CrossRefGoogle Scholar
  23. Latané, B., & Darley, J. M. (1969). Bystander “Apathy”. American Scientist, 57(2), 244–268.
  24. Lehrer, K. (1976). When rational disagreement is impossible. Noûs, 10(3), 327–332.CrossRefGoogle Scholar
  25. Liu, F., Seligman, J., & Girard, P. (2014). Logical dynamics of belief change in the community. Synthese. doi: 10.1007/s11229-014-0432-3.
  26. Mason, W. A., Conrey, F., & Smith, E. R. (2007). Situating social influence processes: Multidirectional flows of influence within social networks. Personality and Social Psychology Review, 11, 279–300.CrossRefGoogle Scholar
  27. O’Gorman, H. J. (1986). The discovery of pluralistic ignorance: An ironic lesson. Journal of the History of the Behavioral Sciences, 22, 333–347.CrossRefGoogle Scholar
  28. Prentice, D. A., & Miller, D. T. (1993). Pluralistic ignorance and alcohol use on campus: Some consequences of misperceiving the social norm. Journal of Personality and Social Psychology, 64(2), 243–256.CrossRefGoogle Scholar
  29. Rendsvig, R. K. (2014). Pluralistic ignorance in the bystander effect: Informational dynamics of unresponsive witnesses in situations calling for intervention. Synthese, 191(11), 2471–2498.CrossRefGoogle Scholar
  30. Sano, K. (2014). Axiomatizing epistemic logic of friendship via tree-sequent calculus. Paper at Kanazawa workshop for epistemic logic and its dynamic extensions, Kanazawa, Japan 2014.
  31. Seligman, J., Liu, F., & Girard, P. (2011). Logic in the community. In M. Banerjee, & A. Seth (Eds.), Logic and its applications, lecture notes in computer science (Vol. 6521, pp. 178–188). Berlin/Heidelberg: Springer. doi: 10.1007/978-3-642-18026-2_15.
  32. Seligman, J., Liu, F., & Girard, P. (2013). Knowledge, friendship and social announcements. In J. van Benthem & F. Liu (Eds.), Logic across the university: Foundations and applications: Proceedings of the Tsinghua logic conference, Beijing, 2013. College Publications.Google Scholar
  33. van Benthem, J., & Liu, F. (2007). Dynamic logic of preference upgrade. Journal of Applied Non-Classical Logics, 17(2), 157–182.CrossRefGoogle Scholar
  34. van Ditmarsch, H., van der Hoek, W., & Kooi, B. (2008). Dynamic epistemic logic. Syntese library (Vol. 337). The Netherlands: Springer.Google Scholar
  35. Westphal, J. D., & Bednar, M. K. (2005). Pluralistic ignorance in corporate boards and firms’ strategic persistence in response to low firm performance. Administrative Science Quarterly, 50(2), 262–298.Google Scholar
  36. Zhen, L., & Seligman, J. (2011). A logical model of the dynamics of peer pressure. Electronic Notes in Theoretical Computer Science, 278(0), 275–288. doi: 10.1016/j.entcs.2011.10.021, Proceedings of the 7th workshop on methods for modalities (M4M 2011) and the 4th workshop on logical aspects of multi-agent systems (LAMAS 2011).

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of LiverpoolLiverpoolUK
  2. 2.CopenhagenDenmark
  3. 3.Department of PhilosophyLund UniversityLundSweden

Personalised recommendations