Journal of Logic, Language and Information

, Volume 25, Issue 2, pp 191–213

Some Properties of Iterated Languages

Article

Abstract

A special kind of substitution on languages called iteration is presented and studied. These languages arise in the application of semantic automata to iterations of generalized quantifiers. We show that each of the star-free, regular, and deterministic context-free languages are closed under iteration and that it is decidable whether a given regular or determinstic context-free language is an iteration of two such languages. This result can be read as saying that the van Benthem/Keenan ‘Frege Boundary’ is decidable for large subclasses of natural language quantifiers. We also determine the state complexity of iteration of regular languages.

Keywords

Semantic automata Generalized quantifiers Iteration Frege boundary Decidability 

References

  1. Barwise, J., & Cooper, R. (1981). Generalized quantifiers and natural language. Linguistics and Philosophy, 4(2), 159–219.CrossRefGoogle Scholar
  2. Clark, R. (2011). Generalized quantifiers and number sense. Philosophy Compass, 6(9), 611–621.CrossRefGoogle Scholar
  3. Cui, B., Gao, Y., Kari, L., & Sheng, Y. (2012). State complexity of combined operations with two basic operations. Theoretical Computer Science, 437, 82–102. doi:10.1016/j.tcs.2012.02.030.CrossRefGoogle Scholar
  4. Dekker, P. (2003). Meanwhile, within the Frege boundary. Linguistics and Philosophy, 26(5), 547–556.CrossRefGoogle Scholar
  5. Diekert, V., & Gastin, P. (2007). First-order definable languages. In J. Flum, E. Grädel, & T. Wilke (Eds.), Logic and automata: History and perspectives, Texts in Logic and Games (pp. 261–306). Amsterdam: Amsterdam University Press.Google Scholar
  6. Giammarresi, D., & Restivo, A. (1997). Two-dimensional languages. In G. Rozenberg & A. Salomaa (Eds.), Handbook of formal languages (vol 3): Beyond words (Vol. 3, pp. 215–268). Berlin: Springer.CrossRefGoogle Scholar
  7. Hopcroft, J. E., & Ullman, J. D. (1979). Introduction to automata theory, languages, and computation. Reading: Addison-Wesley.Google Scholar
  8. Kanazawa, M. (2013). Monadic Quantifiers Recognized by Deterministic Pushdown Automata. In M. Aloni, M. Franke, & F. Roelofsen (Eds.), Proceedings of the 19th Amsterdam Colloquium (pp. 139–146).Google Scholar
  9. Keenan, E. L. (1992). Beyond the Frege boundary. Linguistics and Philosophy, 15(2), 199–221.CrossRefGoogle Scholar
  10. Keenan, E. L. (1996). Further beyond the Frege boundary. In J. van der Does & J. van Eijck (Eds.), Quantifiers, logic, and language, volume 54 of CSLI Lecture Notes (pp. 179–201). Stanford: CSLI Publications.Google Scholar
  11. Lindström, P. (1966). First order predicate logic with generalized quantifiers. Theoria, 32(3), 186–195.Google Scholar
  12. McMillan, C. T., Clark, R., Moore, P., Devita, C., & Grossman, M. (2005). Neural basis for generalized quantifier comprehension. Neuropsychologia, 43(12), 1729–1737. doi:10.1016/j.neuropsychologia.2005.02.012.CrossRefGoogle Scholar
  13. McNaughton, R., & Papert, S. A. (1971). Counter-free automata, volume 65 of MIT Research Monographs. Cambridge: The MIT Press.Google Scholar
  14. McWhirter, S. (2014). An automata-theoretic perspective on polyadic quantification in natural language. Masters of logic thesis, Universiteit van Amsterdam.Google Scholar
  15. Mostowski, A. (1957). On a generalization of quantifiers. Fundamenta Mathematicae, 44(2), 12–36.Google Scholar
  16. Mostowski, M. (1998). Computational semantics for monadic quantifiers. Journal of Applied Non-classical Logics, 8(1–2), 107–121.CrossRefGoogle Scholar
  17. Peters, S., & Westerståhl, D. (2006). Quantifiers in language and logic. Oxford: Clarendon Press.Google Scholar
  18. Sénizergues, G. (1997). The equivalence problem for deterministic pushdown automata is decidable. In P. Degano, R. Gorrieri, & A. Marchetti-Spaccamela (Eds.), Automata, Languages and Programming, Volume 1256 of Lecture Notes in Computer Science (pp. 671–681). Berlin: Springer.Google Scholar
  19. Sénizergues, G. (2001). L(A) = L(B)? Decidability results from complete formal systems. Theoretical Computer Science, 251(1–2), 1–166.CrossRefGoogle Scholar
  20. Sénizergues, G. (2002). L(A) = L(B)? A simplified decidability proof. Theoretical Computer Science, 281(1–2), 555–608.CrossRefGoogle Scholar
  21. Steinert-Threlkeld, S. (2014). On the decidability of iterated languages. In Oleg, P. (Ed.), Proceedings of philosophy, mathematics, linguistics: Aspects of interaction (PhML2014), (pp. 215–224).Google Scholar
  22. Steinert-Threlkeld, S., & Icard III, T. F. (2013). Iterating semantic automata. Linguistics and Philosophy, 36(2), 151–173. doi:10.1007/s10988-013-9132-6.CrossRefGoogle Scholar
  23. Szabolcsi, A. (2010). Quantification. Research surveys in linguistics. Cambridge: Cambridge University Press.Google Scholar
  24. Szymanik, J., & Zajenkowski, M. (2010). Comprehension of simple quantifiers: Empirical evaluation of a computational model. Cognitive Science, 34(3), 521–532. doi:10.1111/j.1551-6709.2009.01078.x.CrossRefGoogle Scholar
  25. Szymanik, J., Steinert-Threlkeld, S., Zajenkowski, M., Icard III, T. F. (2013). Automata and complexity in multiple-quantifier sentence verification. In Proceedings of the 12th international conference on cognitive modeling.Google Scholar
  26. van Benthem, J. (1986). Essays in logical semantics. Dordrecht: D. Reidel Publishing Company.CrossRefGoogle Scholar
  27. van Benthem, J. (1989). Polyadic quantifiers. Linguistics and Philosophy, 12(4), 437–464. doi:10.1007/BF00632472.CrossRefGoogle Scholar
  28. Yu, S., Zhuang, Q., & Salomaa, K. (1994). The state complexities of some basic operations on regular languages. Theoretical Computer Science, 125(2), 315–328. doi:10.1016/0304-3975(92)00011-F.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of PhilosophyStanford UniversityStanfordUSA

Personalised recommendations