Journal of Logic, Language and Information

, Volume 25, Issue 3–4, pp 379–397 | Cite as

Compositional Signaling in a Complex World

  • Shane Steinert-ThrelkeldEmail author


Natural languages are compositional in that the meaning of complex expressions depends on those of the parts and how they are put together. Here, I ask the following question: why are languages compositional? I answer this question by extending Lewis–Skyrms signaling games with a rudimentary form of compositional signaling and exploring simple reinforcement learning therein. As it turns out: in complex worlds, having compositional signaling helps simple agents learn to communicate. I am also able to show that learning the meaning of a function word, once meanings of atomic words are known, presents no difficulty.


Signaling games Compositionality Reinforcement learning Evolution Negation 



I would like to thank the organizers and participants at IDAS’14 and especially Stefano Demichelis and Roland Muehlenbernd for stimulating discussion. An earlier version was presented at a workshop on Knowledge, Argumentation, and Games in Amsterdam. For discussion there, I thank especially Michael Franke and Alexandru Baltag. Jeffrey Barrett, Johan van Benthem, Thomas Icard, Chris Potts, Carlos Santana, Brian Skyrms, and Michael Weisberg have provided helpful comments on earlier versions of this paper as did three anonymous referees for this journal.


  1. Argiento, R., Pemantle, R., Skyrms, B., & Volkov, S. (2009). Learning to signal: Analysis of a micro-level reinforcement model. Stochastic Processes and their Applications, 119(2), 373–390. doi: 10.1016/ Scholar
  2. Barrett, J. A. (2006). Numerical simulations of the Lewis signaling game: Learning strategies, pooling equilibria, and the evolution of grammar. Technical report, Institute for Mathematical Behavioral Sciences, 2006.
  3. Barrett, J. A. (2007). Dynamic partitioning and the conventionality of kinds. Philosophy of Science, 74(4), 527–546.Google Scholar
  4. Barrett, J. A. (2009). The evolution of coding in signaling games. Theory and Decision, 67(2), 223–237. doi: 10.1007/s11238-007-9064-0.CrossRefGoogle Scholar
  5. Beggs, A. W. (2005). On the convergence of reinforcement learning. Journal of Economic Theory, 122(1), 1–36. doi: 10.1016/j.jet.2004.03.008.CrossRefGoogle Scholar
  6. Bergstrom, C. T., & Dugatkin, L. A. (2012). Evolution. New York: W. W. Norton.Google Scholar
  7. Davidson, D. (1964). Theories of meaning and learnable languages. In Inquiries into truth and interpretation (pp. 3–16). Oxford: Oxford University Press. doi: 10.1093/0199246297.001.0001
  8. Fodor, J. (1987). Psychosemantics. Cambridge, MA: The MIT Press.Google Scholar
  9. Fodor, J. (1998). In critical condition: Polemical essays on cognitive science and the philosophy of mind. Cambridge, MA: The MIT Press.Google Scholar
  10. Fodor, J., & Pylyshyn, Z. W. (1988). Connectionism and cognitive architecture. Cognition, 28(1–2), 3–71. doi: 10.1016/0010-0277(88)90031-5.CrossRefGoogle Scholar
  11. Franke, M. (2014). Creative compositionality from reinforcement. In E. A. Cartmill, S. Roberts, H. Lyn, & H. Cornish (Eds.), The evolution of langauge (Proceedings ofEvoLang 10) (pp. 82–89). Singapore: World Scientific.Google Scholar
  12. Frege, G. (1923). Logische Untersuchungen. Dritter Teil: Gedankengefüge (“Compound Thoughts”). Beiträge zur Philosophie des deutschen Idealismus, III, 36–51. doi: 10.1093/mind/LI.202.200.Google Scholar
  13. Futuyma, D. J. (2010). Evolutionary constraint and ecological consequences. Evolution, 64(7), 1865–1884. doi: 10.1111/j.1558-5646.2010.00960.x.CrossRefGoogle Scholar
  14. Glimcher, P. W. (2011). Understanding dopamine and reinforcement learning: The dopamine reward prediction error hypothesis. Proceedings of the National Academy of Sciences, 108(42), 15647–15654. doi: 10.1073/pnas.1014269108.CrossRefGoogle Scholar
  15. Haldane, J. B. S. (1932). The causes of evolution. London: Longmans, Green, and co.Google Scholar
  16. Hassani, M. (2003). Derangements and applications. Journal of Integer Sequences, 6.
  17. Hofbauer, J., & Huttegger, S. M. (2008). Feasibility of communication in binary signaling games. Journal of Theoretical Biology, 254(4), 843–849. doi: 10.1016/j.jtbi.2008.07.010.CrossRefGoogle Scholar
  18. Hofbauer, J., & Huttegger, S. M. (2015). Selection-mutation dynamics of signaling games. Games, 6(1), 2–31. doi: 10.3390/g6010002.CrossRefGoogle Scholar
  19. Hu, Y., Skyrms, B., & Tarrès, P. (2011). Reinforcement learning in signaling game.
  20. Huttegger, S. (2007). Evolution and the explanation of meaning. Philosophy of Science, 74(1), 1–27. doi: 10.1086/519477.CrossRefGoogle Scholar
  21. Janssen, T. M. V. (1997). Compositionality. In: J. van Benthem, A. ter Meulen (eds.), Handbook of logic and language, chapter 7, pp. 417–473. Elsevier Science. doi: 10.1016/B978-044481714-3/50011-4.
  22. Lewis, D. (1969). Convention. Oxford: Blackwell.Google Scholar
  23. Nowak, M. A., & Krakauer, D. C. (1999). The evolution of language. Proceedings of the National Academy of Sciences of the United States of America, 96, 8028–8033.CrossRefGoogle Scholar
  24. Pagin, P., & Westerståhl, D. (2010a). Compositionality I: Definitions and variants. Philosophy Compass, 5(3), 250–264. doi: 10.1111/j.1747-9991.2009.00228.x.CrossRefGoogle Scholar
  25. Pagin, P., & Westerståhl, D. (2010b). Compositionality II: Arguments and problems. Philosophy Compass, 5(3), 265–282. doi: 10.1111/j.1747-9991.2009.00229.x.CrossRefGoogle Scholar
  26. Pawlowitsch, C. (2008). Why evolution does not always lead to an optimal signaling system. Games and Economic Behavior, 63(1), 203–226. doi: 10.1016/j.geb.2007.08.009.CrossRefGoogle Scholar
  27. Roth, A. E., & Erev, I. (1995). Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term. Games and Economic Behavior, 8, 164–212.CrossRefGoogle Scholar
  28. Schlenker, P., Chemla, E., Arnold, K., Lemasson, A., Ouattara, K., Keenan, S., et al. (2014). Monkey semantics: two ‘dialects’ of Campbell’s monkey alarm calls. Linguistics and Philosophy, 37(6), 439–501. doi: 10.1007/s10988-014-9155-7.
  29. Schultz, W. (2004). Neural coding of basic reward terms of animal learning theory, game theory, microeconomics and behavioural ecology. Current Opinion in Neurobiology, 14(2), 139–47. doi: 10.1016/j.conb.2004.03.017.CrossRefGoogle Scholar
  30. Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275, 1593–1599.CrossRefGoogle Scholar
  31. Seyfarth, R. M., Cheney, D. L., & Marler, P. (1980). Vervet monkey alarm calls: Semantic communication in a free-ranging primate. Animal Behavior, 28, 1070–1094.CrossRefGoogle Scholar
  32. Skyrms, B. (1996). Evolution of the social contract. Cambridge, MA: Cambridge University Press.CrossRefGoogle Scholar
  33. Skyrms, B. (2004). The stag hunt and the evolution of social structure. Cambridge, MA: Cambridge University Press.Google Scholar
  34. Skyrms, B. (2010). Signals: Evolution, learning, and information. Oxford: Oxford University Press.CrossRefGoogle Scholar
  35. Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Bradford: The MIT Press.Google Scholar
  36. Szabó, Z. G. (2013). Compositionality. The Stanford Encyclopedia of Philosophy, Fall.
  37. Trapa, P. E., & Nowak, M. A. (2000). Nash equilibria for an evolutionary language game. Journal of Mathematical Biology, 41(2), 172–188. doi: 10.1007/s002850070004.CrossRefGoogle Scholar
  38. von Humboldt, W. (1836). On language: On the diversityof human language construction and its influence on the mentaldevelopment of the human species. Cambridge Texts in the Historyof Philosophy. Cambridge University Press.Google Scholar
  39. Zuberbühler, K. (2002). A syntactic rule in forest monkey communication. Animal Behaviour, 63(2), 293–299. doi: 10.1006/anbe.2001.1914.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of PhilosophyStanford UniversityStanfordUSA

Personalised recommendations