Advertisement

Journal of Logic, Language and Information

, Volume 25, Issue 3–4, pp 355–377 | Cite as

The Evolution of Compositionality in Signaling Games

  • Michael Franke
Article

Abstract

Compositionality is a key design feature of human language: the meaning of complex expressions is, for the most part, systematically constructed from the meanings of its parts and their manner of composition. This paper demonstrates that rudimentary forms of compositional communicative behavior can emerge from a variant of reinforcement learning applied to signaling games. This helps explain how compositionality could have emerged gradually: if unsophisticated agents can evolve prevalent dispositions to communicate compositional-like, there is a direct evolutionary benefit for adaptations that exploit the systematicity in form-meaning mappings more rigorously.

Keywords

Signaling games Reinforcement learning Compositionality 

Notes

Acknowledgments

The development of this material has benefited from comments of and discussions with many colleagues: Jeffrey Barrett, Sven Banisch, Sanne Brinkhorst, Rüdiger Gleim, Simon Kirby, Harvey Lederman, Robert van Rooij, Shawn Simpson, Shane Steinert-Threlkeld, Peter Vogt, and Elliott Wagner. I would also like to thank three anonymous referees for insightful comments and suggestions, as well as the editors of this special issue for their efforts. Financial support by NWO-VENI Grant 275-80-004 and the Institutional Strategy of the University of Tübingen (Deutsche Forschungsgemeinschaft, ZUK 63) is gratefully acknowledged.

References

  1. Argiento, R., Pemantle, R., Skyrms, B., & Volkov, S. (2009). Learning to signal: Analysis of a micro-level reinforcement model. Stochastic Processes and their Applications, 119, 373–390.CrossRefGoogle Scholar
  2. Barrett, J. A. (2007). Dynamic partitioning and the conventionality of kinds. Philos. Sci., 74, 527–546.CrossRefGoogle Scholar
  3. Barrett, J. A. (2009). The evolution of coding in signaling games. Theor. Decis., 67, 223–237.CrossRefGoogle Scholar
  4. Barrett, J. A., & Zollman, K. J. S. (2009). The role of forgetting in the evolution and learning of language. Journal of Experimental and Theoretical Artificial Intelligence, 21(4), 293–309.CrossRefGoogle Scholar
  5. Batali, J. (1998). Computational simulations of the emergence of grammar. In J. R. Hurford, M. Studdert-Kennedy, & C. Knight (Eds.), Evolution of language: Social and cognitive bases. Cambridge: Cambridge University Press.Google Scholar
  6. Blume, A., Kim, Y. G., & Sobel, J. (1993). Evolutionary stability in games of communication. Games and Economic Behavior, 5(5), 547–575.CrossRefGoogle Scholar
  7. Brinkhorst, S. (2014). On evolution of compositionality. Master’s thesis, Universiteit van Amsterdam.Google Scholar
  8. Brochhagen, T. (2015). Minimal requirements for productive compositional signaling. In Proceedings of CogSci (pp. 285–290).Google Scholar
  9. Franke, M., & Jäger, G. (2012). Bidirectional optimization from reasoning and learning in games. Journal of Logic, Language and Information, 21(1), 117–139.CrossRefGoogle Scholar
  10. Franke, M., & Wagner, E. (2014). Game theory and the evolution of meaning. Language and Linguistics Compass, 8(9), 359–372.CrossRefGoogle Scholar
  11. Frege, F. L. G. (1923). Gedankengefüge. In Beiträge zur Philosophie des deutschen Idealismus, Band III. (pp. 36–51). Deutsche Philosophische Gesellschaft.Google Scholar
  12. Gong, T. (2007). Language evolution from a simulation perspective: On the coevolution of compositionality and regularity. Hong Kong: Chinese University of Hong Kong.Google Scholar
  13. Hurford, J. R. (1989). Biological evolution of the saussurean sign as a component of the language acquisition device. Lingua, 77(2), 187–222.CrossRefGoogle Scholar
  14. Huttegger, S. M. (2007). Evolution and the explanation of meaning. Philosophy of Science, 74, 1–27.CrossRefGoogle Scholar
  15. Huttegger, S. M., & Zollman, K. J. S. (2011). Signaling games: Dynamics of evolution and learning. In A. Benz, C. Ebert, G. Jäger, & R. van Rooij (Eds.), Language, games, and evolution, LNAI 6207 (pp. 160–176). Berlin: Springer.CrossRefGoogle Scholar
  16. Huttegger, S. M., Skyrms, B., Smead, R., & Zollman, K. J. S. (2010). Evolutionary dynamics of lewis signaling games: Signaling systems vs. partial pooling. Synthese, 172(1), 177–191.CrossRefGoogle Scholar
  17. Kirby, S. (2002). Learning, bottlenecks and the evolution of recursive syntax. In T. Briscoe (Ed.), Linguistic evolution through language acquisition: Formal and computational models (pp. 173–204). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  18. Kirby, S., & Hurford, J. R. (2002). The emergence of linguistic structure: An overview of the iterated learning model. In A. Cangelosi & D. Parisi (Eds.), Simulating the evolution of language (pp. 121–148). Berlin: Springer.CrossRefGoogle Scholar
  19. Lewis, D. (1969). Convention. A philosophical study. Cambridge, MA: Harvard University Press.Google Scholar
  20. Lewis, D. (1988). Relevant implication. Theoria, 54, 162–174.Google Scholar
  21. Loreto, V., Baronchelli, A., & Puglisi, A. (2010). Mathematical modeling of language games. In S. Nolfi & M. Mirolli (Eds.), Evolution of communication and language in embodied agents (pp. 263–281). Berlin: Springer.CrossRefGoogle Scholar
  22. Mühlenbernd, R. (2011). Learning with neighbors: Emergence of convention in a society of learning agents. Synthese, 183, 87–109.CrossRefGoogle Scholar
  23. Nowak, M. A., & Krakauer, D. C. (1999). The evolution of language. Proceedings of the National Academy of Sciences, 96, 8028–8033.CrossRefGoogle Scholar
  24. Nowak, M. A., Plotkin, J. B., & Jansen, V. A. A. (2000). The evolution of syntactic communication. Nature, 404(30), 495–498.Google Scholar
  25. O’Connor, C. (2014). The evolution of vagueness. Erkenntnis, 79(4), 707–727.CrossRefGoogle Scholar
  26. Oliphant, M., & Batali, J. (1997). Learning and the emergence of coordinated communication. Center for Research on Language Newsletter, 11(1), 1–46.Google Scholar
  27. Pagin, P., & Westerståhl, D. (2010a). Compositionality I: Definitions and variants. Philosophy Compass, 5(3), 250–264.CrossRefGoogle Scholar
  28. Pagin, P., & Westerståhl, D. (2010b). Compositionality II: Arguments and problems. Philosophy Compass, 5(3), 265–282.CrossRefGoogle Scholar
  29. Pawlowitsch, C. (2008). Why evolution does not always lead to an optimal signaling system. Games and Economic Behavior, 63(1), 203–226.CrossRefGoogle Scholar
  30. Roth, A. E., & Erev, I. (1995). Learning in extensive form games: Experimental data and simple dynamical models in the intermediate term. Games and Economic Behavior, 8(1), 164–212.CrossRefGoogle Scholar
  31. Selten, R. (1980). A note on evolutionarily stable strategies in asymmetric animal conflicts. Journal of Theoretical Biology, 84, 93–101.CrossRefGoogle Scholar
  32. Skyrms, B. (2010). Signals: Evolution, learning, and information. Oxford: Oxford University Press.CrossRefGoogle Scholar
  33. Smead, R., & Zollman, K. J. S. (2013). The stability of strategic plasticity. Unpublished manuscript.Google Scholar
  34. Smith, K., Kirby, S., & Brighton, H. (2003). Iterated learning: A framework for the emergence of language. Artificial Life, 9, 371–386.CrossRefGoogle Scholar
  35. Steinert-Threlkeld, S. (2014). Learning to use function words in signaling games. In E. Lorini, & L. Perrussel (Eds.), Proceedings of information dynamics in artificial societies IDAS-14.Google Scholar
  36. Tria, F., Galantucci, B., & Loreto, V. (2012). Naming a structured world: A cultural route to duality of patterning. PLoS One, 7(6), e37,744.CrossRefGoogle Scholar
  37. Wärneryd, K. (1993). Cheap talk, coordination, and evolutionary stability. Games and Economic Behavior, 5(4), 532–546.CrossRefGoogle Scholar
  38. Zollman, K. J. S., & Smead, R. (2010). Plasticity and language: An example of the Baldwin effect? Philosophical Studies, 147(1), 7–21.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of LinguisticsUniversity of TübingenTübingenGermany

Personalised recommendations