Advertisement

Journal of Logic, Language and Information

, Volume 22, Issue 3, pp 269–295 | Cite as

The Dynamification of Modal Dependence Logic

  • Pietro Galliani
Article

Abstract

We examine the transitions between sets of possible worlds described by the compositional semantics of Modal Dependence Logic, and we use them as the basis for a dynamic version of this logic. We give a game theoretic semantics, a (compositional) transition semantics and a power game semantics for this new variant of modal Dependence Logic, and we prove their equivalence; and furthermore, we examine a few of the properties of this formalism and show that Modal Dependence Logic can be recovered from it by reasoning in terms of reachability. Then we show how we can generalize this approach to a very general formalism for reasoning about transformations between pointed Kripke models.

Keywords

Modal Logic Dependence Logic Dynamic semantics   Game Theoretic Semantics 

Notes

Acknowledgments

This work has been supported by the EUROCORES, LogICCC LINT programme, by the Väisälä Foundation and by grant 264917 of the Academy of Finland. The author thanks a referee for a number of very useful suggestions and comments.

References

  1. Abramsky, S. (2007). A compositional game semantics for multi-agent logics of partial information. In J. van Bentham, D. Gabbay, & B. Lowe (Eds.), Interactive logic, volume 1 of texts in logic and games (pp. 11–48). Amsterdam: Amsterdam University Press.Google Scholar
  2. Abramsky, S., & Väänänen, J. (2009). From IF to BI. Synthese, 167, 207–230. doi: 10.1007/s11229-008-9415-6.CrossRefGoogle Scholar
  3. Baltag, A., Moss, L. S., & Solecki, S. (1998). The logic of public announcements, common knowledge, and private suspicions. Proceedings of the 7th conference on theoretical aspects of rationality and knowledge, TARK ’98 (pp. 43–56). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.Google Scholar
  4. Bradfield, J. (2000). Independence: Logics and concurrency. In P. Clote & H. Schwichtenberg (Eds.), Computer science logic volume 1862 of Lecture Notes in Computer Science (pp. 247–261). Berlin/Heidelberg: Springer.Google Scholar
  5. Dekker, P. (2008). A guide to dynamic semantics. ILLC Prepublication Series, (PP-2008-42).Google Scholar
  6. Durand, A., & Kontinen, J. (2011). Hierarchies in dependence logic. CoRR, abs/1105.3324.Google Scholar
  7. Ebbing, J., & Lohmann, P. (2012). Complexity of model checking for modal dependence logic. In M. Bielikov, G. Friedrich, G. Gottlob, S. Katzenbeisser, & G. Turn (Eds.), SOFSEM 2012: theory and practice of Computer Science volume 7147 of Lecture Notes in Computer Science (pp. 226–237). Berlin/Heidelberg: Springer.Google Scholar
  8. Engström, F. (2012). Generalized quantifiers in dependence logic. Journal of Logic, Language and Information, 21, 299–324. doi: 10.1007/s10849-012-9162-4.CrossRefGoogle Scholar
  9. Galliani, P. (2012a). Inclusion and exclusion dependencies in team semantics: On some logics of imperfect information. Annals of Pure and Applied Logic, 163(1), 68–84.CrossRefGoogle Scholar
  10. Galliani, P. (2012b, September). The dynamics of imperfect information. PhD thesis, University of Amsterdam.Google Scholar
  11. Grädel, E., & Väänänen, J. (2013). Dependence and Independence. Studia Logica, 101(2), 399–410. doi: 10.1007/s11225-013-9479-2.
  12. Groenendijk, J., & Stokhof, M. (1991). Dynamic predicate logic. Linguistics and Philosophy, 14(1), 39–100.CrossRefGoogle Scholar
  13. Henkin, L. (1961). Some remarks on infinitely long formulas. In Infinitistic Methods. Proceedings of symposium on foundations of mathematics (pp. 167–183). Pergamon Press.Google Scholar
  14. Hintikka, J., & Sandu, G. (1989). Informational independence as a semantic phenomenon. In J. E. Fenstad, I. T. Frolov, & R. Hilpinen, (Eds.), Logic, methodology and philosophy of science (pp. 571–589). Amsterdam: Elsevier.Google Scholar
  15. Hodges, W. (1997). Compositional semantics for a language of imperfect information. Journal of the Interest Group in Pure and Applied Logics, 5(4), 539–563.Google Scholar
  16. Kontinen, J., & Väänänen, J. (2009). On definability in dependence logic. Journal of Logic, Language and Information, 3(18), 317–332.CrossRefGoogle Scholar
  17. Kontinen, J., & Väänänen, J. (2011). A remark on negation of dependence logic. Notre Dame Journal of Formal Logic, 52(1), 55–65.CrossRefGoogle Scholar
  18. Lohmann, P., & Vollmer, H. (2010). Complexity results for modal dependence logic. In A. Dawar, & H. Veith (Eds.), Computer science logic, volume 6247 of Lecture Notes in Computer Science (pp. 411–425). Berlin/Heidelberg: Springer.Google Scholar
  19. Plaza, J. (2007). Logics of public communications. Synthese, 158, 165–179. doi: 10.1007/s11229-007-9168-7.Google Scholar
  20. Sevenster, M. (2009). Model-theoretic and computational properties of modal dependence logic. Journal of Logic and Computation, 19(6), 1157–1173.CrossRefGoogle Scholar
  21. Tulenheimo, T. (2004). Independence-friendly Modal Logic. PhD thesis, University of Helsinki.Google Scholar
  22. Väänänen, J. (2007). Dependence Logic. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  23. Väänänen, J. (2008). Modal Dependence Logic. In K. R. Apt & R. van Rooij (Eds.), New perspectives on games and interaction. Amsterdam: Amsterdam University Press.Google Scholar
  24. van Benthem, J. (1997). Exploring logical dynamics. Stanford, CA, USA: Center for the Study of Language and Information.Google Scholar
  25. van Benthem, J. (2006). The epistemic logic of IF games. In R. E. Auxier, & L. E. Hahn (Eds.), The Philosophy of Jaakko Hintikka, volume 30 of Library of living philosophers, chapter 13 (pp. 481–513). Open Court Publishers. Google Scholar
  26. Van Benthem, J. (2007). Dynamic logic for belief revision. Journal of Applied NonClassical Logics, 17(2), 129–155.CrossRefGoogle Scholar
  27. van Eijck, J., & Visser, A. (2012). Dynamic semantics. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. (Winter ed.). http://plato.stanford.edu/archives/win2012/entries/dynamic.

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of HelsinkiHelsinkiFinland

Personalised recommendations