Journal of Logic, Language and Information

, Volume 21, Issue 4, pp 433–459 | Cite as

A System of Relational Syllogistic Incorporating Full Boolean Reasoning

Article

Abstract

We present a system of relational syllogistic, based on classical propositional logic, having primitives of the following form:
$$\begin{array}{ll}\mathbf{Some}\, a \,{\rm are} \,R-{\rm related}\, {\rm to}\, \mathbf{some} \,b;\\ \mathbf{Some}\, a \,{\rm are}\,R-{\rm related}\, {\rm to}\, \mathbf{all}\, b;\\ \mathbf{All}\, a\, {\rm are}\,R-{\rm related}\, {\rm to}\, \mathbf{some}\, b;\\ \mathbf{All}\, a\, {\rm are}\,R-{\rm related}\, {\rm to}\, \mathbf{all} \,b.\end{array}$$
Such primitives formalize sentences from natural language like ‘All students read some textbooks’. Here a, b denote arbitrary sets (of objects), and R denotes an arbitrary binary relation between objects. The language of the logic contains only variables denoting sets, determining the class of set terms, and variables denoting binary relations between objects, determining the class of relational terms. Both classes of terms are closed under the standard Boolean operations. The set of relational terms is also closed under taking the converse of a relation. The results of the paper are the completeness theorem with respect to the intended semantics and the computational complexity of the satisfiability problem.

Keywords

Relational syllogistics Completeness Complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balbiani P., Tinchev T., Vakarelov D. (2007a) Modal Logics for region-based theory of space. Fundamenta Informaticae 81: 29–82Google Scholar
  2. Balbiani P., Tinchev T., Vakarelov D. (2007b) Dynamic logics of the region-based theory of discrete spaces. Journal of Applied Non-Classical Logics 17: 39–61CrossRefGoogle Scholar
  3. Ferro A., Omodeo E. G., Schwartz J. T. (2006) Decision procedures for elementary sublanguages of set theory. I. Multilevel syllogistic and some extensions. Communications on pure and Applied Mathematics 33: 599–608CrossRefGoogle Scholar
  4. Gargov G., Passy S., Tinchev T. (1987) Modal environment for Boolean speculations. In: Skordev D. (Ed.), Mathematical logic and its applications. Plenum Press, New York, pp 253–263CrossRefGoogle Scholar
  5. Gargov G., Passy S. (1990) A note on Boolean modal logic. In: Petkov P. (Ed.), Mathematical logic. Plenum Press, New York, pp 299–309CrossRefGoogle Scholar
  6. Goranko V. (1990) Completeness and incompleteness in the bimodal base L(R,-R). In: Petkov P. (Ed.), Mathematical logic. Plenum Press, New York, pp 311–326CrossRefGoogle Scholar
  7. Ivanov, N. A. (2009). Relational Syllogistics. Master’s thesis (in Bulgarian), Sofia University.Google Scholar
  8. Khayata M. Y., Pacholczyk D., Garcia L. (2002) A Qualitative Approach to Syllogistic Reasoning. Annals of Mathematics and Artificial Intelligence 34: 131–159CrossRefGoogle Scholar
  9. Leevers H. J., Harris P. L. (2000) Counterfactual Syllogistic Reasoning in Normal 4-Year-Olds, Children with Learning Disabilities, and Children with Autism. Journal of Experimental Child Psychology 76: 64–87CrossRefGoogle Scholar
  10. Łukasiewicz J. (1957) Aristotle’s Syllogistic from the standpoint of modern formal logic, 2nd ed. Clarendon Press, OxfordGoogle Scholar
  11. Lutz C., Sattler U. (2001) The complexity of reasoning with Boolean modal logics. In: Wolter F., Wansing H., de Rijke M., Zakharyaschev M. (Eds.), Advances in Modal Logic volume 3. CSLI Publications, Stanford, pp 329–348Google Scholar
  12. McAllester D. A., Givan R. (1992) Natural language syntax and first-order inference. Artificial Intelligence 56: 1–20CrossRefGoogle Scholar
  13. Moss, L. S. (2007). Syllogistic logic with complements. Retrieved from Indiana University website: http://www.indiana.edu/~iulg/moss/comp2.pdf.
  14. Moss, L. S. (2008, September). Relational syllogistic logics and other connections between modal logic and natural logic. In Presented at AiML, Nancy; based on work with Ian Pratt-Hartmann. Available at http://aiml08.loria.fr/talks/moss.pdf.
  15. Moss L. S. (2008) Completeness theorems for syllogistic fragments. In: Hamm F., Kepser S. (Eds.), Logics for linguistic structures. Mouton de Gruyter, Berlin, pp 143–174Google Scholar
  16. Moss L. S. (2010) Syllogistic logics with verbs. Journal of Logic and Computation 20: 947–967CrossRefGoogle Scholar
  17. Nishihara N., Morita K., Iwata S. (1990) An extended syllogistic system with verbs and proper nouns, and its completeness proof. Systems and Computers in Japan 21: 760–771Google Scholar
  18. Orlowska E. (1998) Studying incompleteness of information: A class of information logics. In: Kijania- Placek K., Woleński J. (Eds.), The Lvow-Warsaw Scholl and contemporary philosophy. Kluwer, Dordrecht, pp 283–300CrossRefGoogle Scholar
  19. Pfeifer N. (2006) Contemporary syllogistics: Comparative and quantitative syllogisms. In: Krenzebauer G., Doren G. J. W. (Eds.), Argumentation in Theorie und Praxis: Philosophie und Didaktik des Argumentierens. LIT, Wien, pp 57–71Google Scholar
  20. Politzer G. (2004) Some precursors of current theories of syllogistic reasoning. In: Manktelow K., Chung M.-C. (Eds.), Psychology of reasoning. Theoretical and historical perspectives. Psychology Press, Hove, pp 214–240Google Scholar
  21. Pratt-Hartmann I. (2005) Complexity of the two-variable fragment with counting quantifiers. Journal of Logic, Language and Information 14: 369–395CrossRefGoogle Scholar
  22. Pratt-Hartmann I. (2004) Fragments of language. Journal of Logic, Language and Information 13: 207–223CrossRefGoogle Scholar
  23. Pratt-Hartmann I. (2008) On the computational complexity of the numerically definite syllogistic and related logics. Bulletin of Symbolic Logic 14: 1–28CrossRefGoogle Scholar
  24. Pratt-Hartmann, I. (2009). No syllogisms for the numerical syllogistic. In Languages: From formal to natural, Vol. 5533 of LNCS, pp. 192–203, Springer.Google Scholar
  25. Pratt-Hartmann I., Third A. (2006) More fragments of language. Notre Dame Journal of Formal Logic 47: 151–177CrossRefGoogle Scholar
  26. Pratt-Hartmann I., Moss L. S. (2009) Logics for the relational syllogistic. The Review of Symbolic Logic 2: 647–683CrossRefGoogle Scholar
  27. Purdy W. C. (1991) Studies on Natural Language. Notre Dame Journal of Formal Logic 32: 409–425CrossRefGoogle Scholar
  28. Rayside, D., & Kontogiannis, K. (2001). On the syllogistic structure of object-oriented programming. In Presented at the 23rd international conference on software engineering (ICSE’01).Google Scholar
  29. Shepherdson J. (1956) On the interpretation of Aristotelian syllogistic. Journal of Symbolic Logic 21: 137–147CrossRefGoogle Scholar
  30. Thorne, C., & Calvanese, D. (2009). The data complexity of the syllogistic fragments of English. In Proceedings of the 17th Amsterdam colloquium conference on Logic, language and meaning 2009, pp. 114–123.Google Scholar
  31. Van der Does, J., & Van Eijck, J. (Eds.). (1996). Basic quantifier theory. In Quantifiers, logic, and language (pp. 1–45). Stanford: CSLI.Google Scholar
  32. Van Eijck, J. (2007). Natural logic for natural language. In B. Ten Cate & H. Zeevat (Eds.) Logic, language, and computation, Springer. Presented at 6-th international Tbilisi symposium on logic, language, and computation, Batumi, Georgia, pp. 216–230. September 12–16, 2005.Google Scholar
  33. Wedberg A. (1948) The Aristotelian theory of classes. Ajatus 15: 299–314Google Scholar
  34. Westerståhl D. (1989) Aristotelian syllogisms and generalized quantifiers. Studia Logica 48: 577–585CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Faculty of Mathematics and InformaticsSofia UniversitySofiaBulgaria

Personalised recommendations