Journal of Logic, Language and Information

, Volume 21, Issue 3, pp 237–277 | Cite as

Questions and Answers in an Orthoalgebraic Approach

Open Access
Article

Abstract

Taking the lead from orthodox quantum theory, I will introduce a handy generalization of the Boolean approach to propositions and questions: the orthoalgebraic framework. I will demonstrate that this formalism relates to a formal theory of questions (or ‘observables’ in the physicist’s jargon). This theory allows formulating attitude questions, which normally are non-commuting, i.e., the ordering of the questions affects the answer behavior of attitude questions. Further, it allows the expression of conditional questions such as “If Mary reads the book, will she recommend it to Peter?”, and thus gives the framework the semantic power of raising issues and being informative at the same time. In the case of commuting observables, there are close similarities between the orthoalgebraic approach to questions and the Jäger/Hulstijn approach to question semantics. However, there are also differences between the two approaches even in case of commuting observables. The main difference is that the Jäger/Hulstijn approach relates to a partition theory of questions whereas the orthoalgebraic approach relates to a ‘decorated’ partition theory (i.e. the elements of the partition are decorated by certain semantic values). Surprisingly, the orthoalgebraic approach is able to overcome most of the difficulties of the Jäger/Hulstijn approach. Furthermore, the general approach is suitable to describe the different types of (non-commutative) attitude questions as investigated in modern survey research. Concluding, I will suggest that an active dialogue between the traditional model-theoretic approaches to semantics and the orthoalgebraic paradigm is mandatory.

Keywords

Attitude questions Commutativity Conditional questions Decorated partitions Orthoalgebra Orthodox quantum theory Qubit Question semantics Structured propositions Survey research 

References

  1. Aerts D. (1982) Example of a macroscopical classical situation that violates Bell inequalities. Lettere Al Nuovo Cimento 34(4): 107–111CrossRefGoogle Scholar
  2. Aerts, D., Broekaert, J., & Gabora, L. (2008). A case for applying an abstracted quantum formalism to cognition, New Ideas in Psychology. Archive reference and link: http://uk.arxiv.org/abs/quant-ph/0404068.
  3. Amira H., Coecke B., Stubbe I. (1998) How quantales emerge by introducing induction within the operational approach. Helvetica Physica Acta 71(5): 554–572Google Scholar
  4. Arita, S., & Kaufmann, S. (2008). The Japanese unconditional operator doose. Paper presented at the 10th symposium on logic and language (LoLa 10).Google Scholar
  5. Axler S. (1996) Linear algebra done right. Springer, New YorkGoogle Scholar
  6. Birkhoff G., von Neumann J. (1936) The logic of quantum mechanics. Annals of Mathematics 37(4): 823–843CrossRefGoogle Scholar
  7. Blutner R. (2009) Concepts and bounded Rationality:. In: Accardi L., Adenier G., Fuchs C., Jaeger G., Khrennikov A. Y., Larsson, & S. Stenholm J.-Å., S. Stenholm (eds) Foundations of probability and physics-5. American Institute of Physics Conference Proceedings, New York, pp 302–310Google Scholar
  8. Blutner R. (2010) Quantum mechanics meets cognitive science: Explanatory vs. descriptive approaches. NeuroQuantology 8(3): 314–318Google Scholar
  9. Blutner R., Hochnadel E. (2010) Two qubits for C.G. Jung’s theory of personality. Cognitive Systems Research 11(3): 243–259CrossRefGoogle Scholar
  10. Bruza, P., Busemeyer, J. R., & Gabora, L. (2009). Special issue on quantum cognition. Journal of Mathematical Psychology, 53(5).Google Scholar
  11. Coecke B., Sadrzadeh M., Clark S. (2011) Mathematical foundations for a compositional distributional model of meaning. Linguistic Analysis 36: 345–384Google Scholar
  12. DallaChiara M. L., Giuntini R., Greechie R. (2004) Reasoning in quantum theory: Sharp and unsharp quantum logics. Springer, Berlin, New YorkGoogle Scholar
  13. Downs A. (1957) An economic theory of democracy. Harper, New YorkGoogle Scholar
  14. Dunn J. M., Hardegree G. M. (2001) Algebraic methods in philosophical logic. Oxford University Press, OxfordGoogle Scholar
  15. Einstein A., Podolsky B., Rosen N. (1935) Can quantum-mechanical description of physical reality be considered complete?. Physical Review 47: 777–780CrossRefGoogle Scholar
  16. Franco, R. (2007a). The conjunction fallacy and interference effects. Arxiv preprint arXiv:0708.3948.Google Scholar
  17. Franco, R. (2007b). Quantum mechanics and rational ignorance. Arxiv preprint physics/0702163.Google Scholar
  18. Groenendijk J. (2009) Inquisitive semantics:. In: Bosch P., Gabelaia D., Lang J. (eds) Logic, language, and computation. Springer, Berlin, pp 80–94CrossRefGoogle Scholar
  19. Groenendijk J., Stokhof M. (1984) Studies on the semantics of questions and the pragmatics of answers. Jurriaans BV, AmsterdamGoogle Scholar
  20. Groenendijk, J., & Stokhof, M. (1997). Questions. In J. van Benthem & A. ter Meulen (Eds.), Handbook of logic and language (pp. 1055–1124). Amsterdam: Elsevier.Google Scholar
  21. Hamblin C. L. (1973) Questions in Montague English. Foundations of Language 10(1): 41–53Google Scholar
  22. Hausser, R. (eds) (1983) The syntax and semantics of English mood. Reidel, DordrechtGoogle Scholar
  23. Hulstijn, J. (1997). Structured information states. Raising and resolving issues. In Proceedings of MunDial97. University of Munich.Google Scholar
  24. Isaacs J., Rawlins K. (2008) Conditional questions. Journal of Semantics 25: 269–319CrossRefGoogle Scholar
  25. Jäger, G. (1996). Only updates. On the dynamics of the focus particle only. In Proceedings of the 10th Amsterdam Colloquium (pp. 387–405).Google Scholar
  26. Johnson E. J., Haubl G., Keinan A. (2007) Aspects of endowment: A query theory of value construction. Journal of Experimental Psychology: Learning, Memory and Cognition 33(3): 461–473CrossRefGoogle Scholar
  27. Johnson J. G., Busemeyer J. R. (2010) Decision making under risk and uncertainty. Wiley Interdisciplinary Reviews: Cognitive Science 1(5): 736–749CrossRefGoogle Scholar
  28. Jung C. G. (1921) Psychologische Typen. Rascher, ZürichGoogle Scholar
  29. Jung C. G., von Franz M.-L., Henderson J. L. (1968) Der Mensch und seine Symbole. Walter, Solothurn & DüsseldorfGoogle Scholar
  30. Kalmbach G. (1983) Orthomodular lattices. Academic Press, LondonGoogle Scholar
  31. Karttunen L. (1977) Syntax and semantics of questions. Linguistics and Philosophy 1(1): 3–44CrossRefGoogle Scholar
  32. Khrennikov A. Y. (2006) Quantum-like brain: “Interference of minds”. BioSystems 84(3): 225–241CrossRefGoogle Scholar
  33. Krifka M. (2001) For a structured meaning account of questions and answers. Studia Grammatika 52: 287–319Google Scholar
  34. Krifka M. (2004) The semantics of questions and the focusation of answers. In: Lee C., Gordon M., Büring D. (eds) Topic and focus: Cross-linguistic perspectives on meaning and intonation. Springer, BerlinGoogle Scholar
  35. Lindley D. (2008) Uncertainty. Anchor Books, New YorkGoogle Scholar
  36. Loeser F. (1968) Interrogativlogik. Deutscher Verlag der Wissenschaften, BerlinGoogle Scholar
  37. Lüders, G. (1951). Über die Zustandsänderung durch den Meßprozeß. Annalen der Physik, 8, 322–328.Google Scholar
  38. Miyadera, T., & Imai, H. (2009). No-cloning theorem on quantum logics. Available from http://arxiv.org/abs/0904.3229v3.
  39. Moore D. W. (2002) Measuring new types of question-order effects: Additive and subtractive. The Public Opinion Quarterly 66(1): 80–91CrossRefGoogle Scholar
  40. Nelken, R., & Francez, N. (1999). The algebraic semantics of questions. Paper presented at the MOL6, the 6th meeting on mathematics of language.Google Scholar
  41. Nelken R., Francez N. (2000) The algebraic semantics of interrogative NPs. Grammars 3(2): 259–273CrossRefGoogle Scholar
  42. Nelken R., Francez N. (2002) Bilattices and the semantics of natural language questions. Linguistics and Philosophy 25(1): 37–64CrossRefGoogle Scholar
  43. Niestegge G. (2008) An approach to quantum mechanics via conditional probabilities. Foundations of Physics 38: 241–256CrossRefGoogle Scholar
  44. Piron, C. (1976). Foundations of quantum physics. Reading, Mass: WA Benjamin, Inc.Google Scholar
  45. Rawlins, K. (2008). (Un)conditionals: An investigation in the syntax and semantics of conditional structures. Unpublished Ph.D. thesis, UCSC.Google Scholar
  46. Rédei M. (2009) The Birkhoff–von Neumann concept of quantum logic. In: Engesser K., Gabbay D. M., Lehmann D. (eds) Handbook of quantum logic and quantum structures. Elsevier, Amsterdam, pp 1–22CrossRefGoogle Scholar
  47. Roelofsen F., van Gool S. (2010) Disjunctive questions, intonation, and highlighting. In: Aloni M., Bastiaanse H., Jager T. D., Schulz K. (eds) Logic, language and meaning. Springer, Berlin, pp 384–394CrossRefGoogle Scholar
  48. Schuman H., Presser S. (1981) Questions and answers in attitude surveys: Experiments in question form, wording, and context. Academic Press, New YorkGoogle Scholar
  49. Strang G. (2003) Introduction to linear algebra. Wellesley Cambridge Press, CambridgeGoogle Scholar
  50. Sudman S., Bradburn N. M. (1982) Asking questions. Jossey-Bass Inc Pub, San FranciscoGoogle Scholar
  51. Tichy P. (1978) Questions, answers, and logic. American Philosphical Quaterly 15: 275–284Google Scholar
  52. Tourangeau R., Rips L. J., Rasinski K. (2000) The psychology of survey response. Cambridge University Press, CambridgeGoogle Scholar
  53. Vedral V. (2006) Introduction to quantum information science. Oxford University Press, New YorkCrossRefGoogle Scholar
  54. Velissaratou, S. (2000). Conditional questions and which-interrogatives: Master of Logic Thesis MoL-2000-01, ILLC/University of Amsterdam.Google Scholar
  55. Von Neumann J. (1932) Mathematische Grundlagen der Quantenmechanik. Transl. by R. Beyer (Princeton: Princeton University Press 1955). Springer, HeidelbergGoogle Scholar
  56. Von Stechow A. (1991) Focusing and backgrounding operators. In: Abraham W. (eds) Discourse particles. John Benjamins, Amsterdam, pp 37–84Google Scholar
  57. Wang, Z., & Busemeyer, J. R. (2011). Explaining and predicting question order effects using a quantum probability model. Under review.Google Scholar
  58. Weber E. U., Johnson E. J. (2006) Constructing preferences from memories. In: Lichtenstein S., Slovic P. (eds) The construction of preference. Cambridge University Press, New York, NY, pp 397–410Google Scholar
  59. Weber E. U., Johnson E. J. (2009) Mindful judgement and decision making. Annual Review of Psychology 60: 53–85CrossRefGoogle Scholar
  60. Wiśniewski A. (1995) The posing of questions: Logical foundations of erotetic inferences. Kluwer, DordrechtGoogle Scholar
  61. Zaefferer D. (1991) Conditionals and unconditionals. In: Cooper R., Mukai K., Peny J. (eds) Situation theory and its applications. Stanford, Cal: CSLI, pp 471–492Google Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Institute for Logic, Language, and ComputationUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations