Journal of Logic, Language and Information

, Volume 21, Issue 3, pp 347–364 | Cite as

A Diagrammatic Calculus of Syllogisms

Article

Abstract

A diagrammatic logical calculus for the syllogistic reasoning is introduced and discussed. We prove that a syllogism is valid if and only if it is provable in the calculus.

Keywords

Syllogism Venn-Peirce diagram Syllogistic diagram 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bradley Bassler O. (1998) Leibniz on intension, extension, and the representation of syllogistic inference. Synthese 116(2): 117–139CrossRefGoogle Scholar
  2. De Morgan A. (1850) On the symbols of logic, the theory of the syllogism, and in particular of the copula, and the application of the theory of probabilities to some questions of evidence. Transactions of the Cambridge Philosophical Society 9: 79–127Google Scholar
  3. Englebretsen G. (1992) Linear diagrams for syllogisms (with relationals). Notre Dame Journal of Formal Logic 33(1): 37–69CrossRefGoogle Scholar
  4. Glashoff K. (2010) An intensional Leibniz semantics for Aristotelian logic. Review of Symbolic Logic 3(2): 262–272CrossRefGoogle Scholar
  5. Głazowska K. (1958) The structure of valid n-term syllogisms. Studia Logica 8: 249–257CrossRefGoogle Scholar
  6. Hammer E. (1994) Reasoning with sentences and diagrams. Notre Dame Journal of Formal Logic 35(1): 73–87CrossRefGoogle Scholar
  7. Hammer, E., & Danner, N. (1996). Towards a model theory of Venn diagrams. In Logical reasoning with diagrams, volume 6 of Stud. Logic Comput. (pp. 109–127). New York: Oxford University Press.Google Scholar
  8. Hobart, M. E., & Richards, J. L. (2008). De Morgan’s logic. In Handbook of the history of logic. British logic in the nineteenth century, volume 4 of Handb. Hist. Log. (pp. 283–329). Amsterdam: Elsevier/North-Holland.Google Scholar
  9. La Palme Reyes M., Macnamara J., Reyes Gonzalo E. (1994) Functoriality and grammatical role in syllogisms. Notre Dame Journal of Formal Logic 35(1): 41–66CrossRefGoogle Scholar
  10. Lemon O., Pratt I. (1998) On the insufficiency of linear diagrams for syllogisms. Notre Dame Journal of Formal Logic 39(4): 573–580CrossRefGoogle Scholar
  11. Łukasiewicz J. (1951) Aristotle’s syllogistic from the standpoint of modern formal logic. Clarendon Press, OxfordGoogle Scholar
  12. Mendelson E. (1997) Introduction to mathematical logic. (4th ed.). Chapman & Hall/CRC, LondonGoogle Scholar
  13. Meredith C. A. (1953) The figures and moods of the n-term aristotelian syllogism. Dominican Studies 6: 42–47Google Scholar
  14. Rayside, D., & Kontogiannis, K. (2001). On the syllogistic structure of object-oriented programming. In Proceedings of the 23rd international conference on software engineering, ICSE’01 (pp. 113–122). Toronto, ON: IEEE Computer Society.Google Scholar
  15. Roberts, D. D. (1973). The existential graphs of Charles S. Peirce. In Approaches to semiotics (Vol. 27, p. 168). The Hague: Mouton.Google Scholar
  16. Shin S.-J. (1994) The logical status of diagrams. Cambridge University Press, CambridgeGoogle Scholar
  17. Shin, S.-J. (1996). Situation-theoretic account of valid reasoning with Venn diagrams. In Logical reasoning with diagrams, Volume 6 of Stud. Logic Comput. (pp. 81–108). New York: Oxford University Press.Google Scholar
  18. Smyth M. B. (1971) A diagrammatic treatment of syllogistic. Notre Dame Journal of Formal Logic 12(4): 483–488CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.DISI, University of GenovaGenovaItaly

Personalised recommendations