Journal of Logic, Language and Information

, Volume 21, Issue 3, pp 279–298

Sequential Dynamic Logic

Article

Abstract

We introduce a substructural propositional calculus of Sequential Dynamic Logic that subsumes a propositional part of dynamic predicate logic, and is shown to be expressively equivalent to propositional dynamic logic. Completeness of the calculus with respect to the intended relational semantics is established.

Keywords

Dynamic logic Substructural logics Dynamic predicate logic Sequent calculus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blackburn P., Venema Y. (1995) Dynamic squares. Journal of Philosophical Logic 24: 469–523CrossRefGoogle Scholar
  2. Bochman, A., & Gabbay, D. M. (2010). Causal dynamic inference. No. 368. To appear in Annals of Mathematics and Artificial Intelligence.Google Scholar
  3. Dekker, P. J. E. (2008). A guide to dynamic semantics. Technical report, ILLC Prepublications.Google Scholar
  4. Groenendijk J., Stokhof M. (1991) Dynamic predicate logic. Linguistics and Philosophy 14: 39–101CrossRefGoogle Scholar
  5. Harel D., Kozen D., Tiuryn J. (2000) Dynamic logic. MIT Press, CambridgeGoogle Scholar
  6. Hollenberg M. (1997) An equational axiomatization of dynamic negation and relational composition. Journal of Logic, Language and Information 6: 381–401CrossRefGoogle Scholar
  7. Kozen D., Parikh R. (1981) An elementary proof of the completeness of PDL. Theoretical Computer Science 14: 113–118CrossRefGoogle Scholar
  8. Kozen D., Tiuryn J. (2003) Substructural logic and partial correctness. ACM Transactions on Computational Logic 4(3): 355–378CrossRefGoogle Scholar
  9. Renardel de Lavalette G., Kooi B., Verbrugge R. (2008) Strong completeness and limited canonicity for PDL. Journal of Logic, Language and Information 17: 69–87CrossRefGoogle Scholar
  10. Benthem J. (1996) Exploring logical dynamics. CSLI Publications, StanfordGoogle Scholar
  11. Eijck J., Stokhof M. (2006) The gamut of dynamic logics. In: Gabbay D. M., Woods J. (eds) Handbook of the history of logic. North-Holland, Amsterdam, pp 499–600Google Scholar
  12. Eijck J. (1999) Axiomatising dynamic logics for anaphora. Journal of Language and Computation 1: 103–126Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Computer Science DepartmentHolon Institute of TechnologyHolonIsrael
  2. 2.Computer Science DepartmentBar-Ilan UniversityRamat GanIsrael
  3. 3.King’s College LondonLondonUK

Personalised recommendations