Journal of Logic, Language and Information

, Volume 20, Issue 3, pp 385–396 | Cite as

A Mathematical Model of Prediction-Driven Instability: How Social Structure Can Drive Language Change

  • W. Garrett Mitchener


I discuss a stochastic model of language learning and change. During a syntactic change, each speaker makes use of constructions from two different idealized grammars at variable rates. The model incorporates regularization in that speakers have a slight preference for using the dominant idealized grammar. It also includes incrementation: The population is divided into two interacting generations. Children can detect correlations between age and speech. They then predict where the population’s language is moving and speak according to that prediction, which represents a social force encouraging children not to sound out-dated. Both regularization and incrementation turn out to be necessary for spontaneous language change to occur on a reasonable time scale and run to completion monotonically. Chance correlation between age and speech may be amplified by these social forces, eventually leading to a syntactic change through prediction-driven instability.


Language variation Language change Incrementation Mathematical model Social structure Prediction-driven instability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adger D. (2003) Core syntax: A minimalist approach. Oxford University Press, OxfordGoogle Scholar
  2. Bresnan, J., & Nikitina, T. (2007). The gradience of the dative alternation. In L. Uyechi, & L. H. Wee (Eds.), Reality exploration and discovery: Pattern interaction in language and life. Stanford: CSLI Publiscations.
  3. Briscoe E. J. (2000) Grammatical acquisition: Inductive bias and coevolution of language and the language acquisition device. Language 76(2): 245–296CrossRefGoogle Scholar
  4. Briscoe, E. J. (2002). Grammatical acquisition and linguistic selection. In E. J. Briscoe (Ed.), Linguistic evolution through language acquisition: Formal and computational models. Cambridge: Cambridge University Press.
  5. Ellegård A. (1953) The auxiliary do: The establishment and regulation of its use in English, Gothenburg studies in English. Almqvist and Wiksell, StockholmGoogle Scholar
  6. Gibson E., Wexler K. (1994) Triggers. Linguistic Inquiry 25: 407–454Google Scholar
  7. Gold E. M. (1967) Language identification in the limit. Information and Control 10: 447–474CrossRefGoogle Scholar
  8. Hudson Kam C. L., Newport E. L. (2005) Regularizing unpredictable variation: The roles of adult and child learners in language formation and change. Language Learning and Development 1(2): 151–195CrossRefGoogle Scholar
  9. Kirby S. (2001) Spontaneous evolution of linguistic structure: An iterated learning model of the emergence of regularity and irregularity. IEEE Transactions on Evolutionary Computation 5(2): 102–110CrossRefGoogle Scholar
  10. Komarova N. L., Niyogi P., Nowak M. A. (2001) The evolutionary dynamics of grammar acquisition. Journal of Theoretical Biology 209(1): 43–59CrossRefGoogle Scholar
  11. Kroch A. (1989) Reflexes of grammar in patterns of language change. Language Variation and Change 1: 199–244CrossRefGoogle Scholar
  12. Labov W. (1994) Principles of linguistic change: Internal factors. Blackwell, Cambridge, MAGoogle Scholar
  13. Labov W. (2001) Principles of linguistic change: Social factors. Blackwell, Cambridge, MAGoogle Scholar
  14. Mitchener W. G. (2003) Bifurcation analysis of the fully symmetric language dynamical equation. Journal of Mathematical Biology 46: 265–285. doi: 10.1007/s00285-002-0172-8 CrossRefGoogle Scholar
  15. Mitchener W. G. (2007) Game dynamics with learning and evolution of universal grammar. Bulletin of Mathematical Biology 69(3): 1093–1118. doi: 10.1007/s11538-006-9165-x CrossRefGoogle Scholar
  16. Mitchener, W. G. (2009a). Mean-field and measure-valued differential equation models for language variation and change in a spatially distributed population, submitted.Google Scholar
  17. Mitchener, W. G. (2009b). A stochastic model of language change through social structure and prediction-driven instability, submitted.Google Scholar
  18. Mitchener W. G., Nowak M. A. (2003) Competitive exclusion and coexistence of universal grammars. Bulletin of Mathematical Biology 65(1): 67–93. doi: 10.1006/bulm.2002.0322 CrossRefGoogle Scholar
  19. Mitchener W. G., Nowak M. A. (2004) Chaos and language. Proceedings of the Royal Society of London, Biological Sciences 271(1540): 701–704. doi: 10.1098/rspb.2003.2643 CrossRefGoogle Scholar
  20. Niyogi P. (1998) The informational complexity of learning. Kluwer Academic Publishers, BostonCrossRefGoogle Scholar
  21. Niyogi P., Berwick R. C. (1996) A language learning model for finite parameter spaces. Cognition 61: 161–193CrossRefGoogle Scholar
  22. Niyogi, P., & Berwick, R. C. (1997). A dynamical systems model for language change. Complex Systems, 11, 161–204, Scholar
  23. Nowak M. A., Komarova N. L., Niyogi P. (2001) Evolution of universal grammar. Science 291(5501): 114–118CrossRefGoogle Scholar
  24. Nowak M. A., Komarova N. L., Niyogi P. (2002) Computational and evolutionary aspects of language. Nature 417(6889): 611–617CrossRefGoogle Scholar
  25. Radford A. (2004) Minimalist syntax: Exploring the structure of English. Cambridge University Press, CambridgeGoogle Scholar
  26. Tesar B., Smolensky P. (2000) Learnability in optimality theory. MIT Press, Cambridge, MAGoogle Scholar
  27. Warner A. (2005) Why DO dove: Evidence for register variation in early modern English negatives. Language Variation and Change 17: 257–280. doi: 10.1017/S0954394505050106 CrossRefGoogle Scholar
  28. Yang C. D. (2002) Knowledge and learning in natural language. Oxford University Press, OxfordGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of MathematicsCollege of CharlestonCharlestonUSA

Personalised recommendations