Journal of Logic, Language and Information

, Volume 19, Issue 2, pp 129–136 | Cite as

New Directions in Type-Theoretic Grammars

  • Reinhard MuskensEmail author
Open Access


This paper argues for the idea that in describing language we should follow Haskell Curry in distinguishing between the structure of an expression and its appearance or manifestation. It is explained how making this distinction obviates the need for directed types in type-theoretic grammars and a simple grammatical formalism is sketched in which representations at all levels are lambda terms. The lambda term representing the abstract structure of an expression is homomorphically translated to a lambda term representing its manifestation, but also to a lambda term representing its semantics.


Lambda grammar Abstract categorial grammar Tectogrammatics Phenogrammatics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.


  1. Ajdukiewicz, K. (1935). Die syntaktische Konnexität. Studia Philosophica, 1, 1–27 English translation in Storrs McCall, ed., Polish Logic, 1920–1939, Oxford, 1967, 207–231.Google Scholar
  2. Bar-Hillel Y. (1953) A quasi-arithmetical notation for syntactic description. Language 29: 47–58CrossRefGoogle Scholar
  3. Chomsky N. (1995) The minimalist program. MIT Press, HarvardGoogle Scholar
  4. Curry H. B. (1961) Some logical aspects of grammatical structure. In: Roman O. J. (eds) Structure of language and its mathematical aspects vol 12 of symposia on applied mathematics. American Mathematical Society, Providence, pp 56–68Google Scholar
  5. de Groote, J (2001). Towards abstract categorial grammars. In Association for computational linguistics, 39th annual meeting and 10th conference of the European chapter, proceedings of the conference (pp. 148–155). Toulouse, France: ACL.Google Scholar
  6. Dowty D. R. (1982) Grammatical relations and Montague Grammar. In: Jacobson P., Pullum G. K. (eds) The nature of syntactic representation. Reidel, Dordrecht, pp 79–130Google Scholar
  7. Dowty D. R. (1995) Toward a minimalist theory of syntactic structure. In: Bunt H., Horck A. (eds) Syntactic discontinuity. Mouton, The Hague, pp 11–62Google Scholar
  8. Gazdar G., Klein E., Pullum G., Sag I. (1985) Generalized Phrase Structure Grammar. Harvard University Press, Cambridge, MAGoogle Scholar
  9. Lambek J. (1958) The mathematics of sentence structure. American Mathematical Monthly 65: 154–170CrossRefGoogle Scholar
  10. Lecomte, A. (2001). Categorial minimalism. In M. Moortgat (Eds.), LACL’98, vol 2014 of LNAI (pp. 143–158).Google Scholar
  11. Mansfield, L., Martin, S., Pollard, C., & Worth, C. (2009). Phenogrammatical labelling in Convergent Grammar: the case of wrap (unpublished manuscript).Google Scholar
  12. Montague, R. (1973). The proper treatment of quantification in ordinary English. In J. Hintikka, J. Moravcsik, & P. Suppes (Eds.), Approaches to natural language (pp. 221–242). Dordrecht: Reidel. Reprinted in Thomason (1974).Google Scholar
  13. Moortgat, M. (1997). Categorial type logics. In J. van Benthem, A. Ter Meulen (Eds.), Handbook of logic and language (pp. 93–177). Elsevier.Google Scholar
  14. Muskens R.A. (1995) Meaning and partiality. CSLI, StanfordGoogle Scholar
  15. Muskens, R. A. (2001). Categorial grammar and Lexical-Functional Grammar. In M. Butt, T. H. King (Eds.), Proceedings of the LFG01 conference (pp. 259–279). Stanford, CA: University of Hong Kong. CSLI Publications.
  16. Muskens, R. A. (2003). Language, lambdas, and logic. In G.-J. Kruijff, R. Oehrle (Eds.), Resource sensitivity in binding and anaphora studies in linguistics and philosophy (pp. 23–54). Kluwer.Google Scholar
  17. Muskens R. (2007) Separating syntax and combinatorics in categorial grammar. Research on Language and Computation 5(3): 267–285CrossRefGoogle Scholar
  18. Oehrle R. T. (1994) Term-labeled categorial type systems. Linguistics and Philosophy 17: 633–678CrossRefGoogle Scholar
  19. Oehrle R. T. (1995) Some 3-dimensional systems of labelled deduction. Bulletin of the IGPL 3: 429–448CrossRefGoogle Scholar
  20. Oehrle R. T. (1999) LFG as labeled deduction. In: Dalrymple M. (eds) Semantics and syntax in Lexical Functional Grammar, Chap. 9. MIT Press, Cambridge, MA, pp 319–357Google Scholar
  21. Ranta A. (1994) Type-theoretical grammar. Oxford UP, OxfordGoogle Scholar
  22. Ranta A. (2004) Grammatical framework: A type-theoretical grammar formalism. Journal of Functional Programming 14(2): 145–189CrossRefGoogle Scholar
  23. Thomason, R. (ed). (1974). Formal philosophy, selected papers of Richard Montague. Yale University Press.Google Scholar
  24. van Benthem J. F. A. K. (1986) Essays in logical semantics. Reidel, DordrechtGoogle Scholar
  25. van Benthem J. F. A. K. (1991) Language in action. North-Holland, AmsterdamGoogle Scholar

Copyright information

© The Author(s) 2009

Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Department of PhilosophyTilburg UniversityTilburgThe Netherlands

Personalised recommendations