Journal of Logic, Language and Information

, Volume 18, Issue 2, pp 291–292

Strong Completeness and Limited Canonicity for PDL

  • Gerard Renardel de Lavalette
  • Barteld Kooi
  • Rineke Verbrugge


  1. Goldblatt, R. (1982). Axiomatising the logic of computer prorgamming. Lecture Notes in Computer Science (Vol. 130). Berlin: Springer.Google Scholar
  2. Goldblatt, R. (1987). Logics of time and computation. CSLI Lecture Notes (Vol. 7). Stanford, CA: CSLI Publications (2nd ed., revised and expanded, 1992).Google Scholar
  3. Goldblatt, R. (1993). Mathematics of modality. CSLI Lecture Notes (Vol. 43). Stanford, CA: CSLI Publications.Google Scholar
  4. Mirkowska, G. (1981). PAL—Propositional algorithmic logic. In E. Engeler (Ed.), Logic of Programs. Lecture Notes in Computer Science (Vol. 125, pp. 23–101). Berlin: Springer.Google Scholar
  5. Renardel de Lavalette G.R., Kooi B., Verbrugge R. (2008) Strong completeness and limited canonicity for PDL. Journal of Logic, Language and Information 17: 69–87CrossRefGoogle Scholar
  6. Segerberg K. (1994) A model existence program in infinitary propositional modal logic. Journal of Philosophical Logic 23: 337–367CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Gerard Renardel de Lavalette
    • 1
  • Barteld Kooi
    • 2
  • Rineke Verbrugge
    • 3
  1. 1.Department of Computing ScienceUniversity of GroningenGroningenThe Netherlands
  2. 2.Faculty of PhilosophyUniversity of GroningenGroningenThe Netherlands
  3. 3.Department of Artificial IntelligenceUniversity of GroningenGroningenThe Netherlands

Personalised recommendations