Journal of Logic, Language and Information

, Volume 18, Issue 2, pp 217–250 | Cite as

Designing Visual Languages for Description Logics

  • Brian R. Gaines


Semantic networks were developed in cognitive science and artificial intelligence studies as graphical knowledge representation and inference tools emulating human thought processes. Formal analysis of the representation and inference capabilities of the networks modeled them as subsets of standard first-order logic (FOL), restricted in the operations allowed in order to ensure the tractability that seemed to characterize human reasoning capabilities. The graphical network representations were modeled as providing a visual language for the logic. Sub-sets of FOL targeted on knowledge representation came to be called description logics, and research on these logics has focused on issues of tractability of subsets with differing representation capabilities, and on the implementation of practical inference systems achieving the best possible performance. Semantic network research has kept pace with these developments, providing visual languages for knowledge entry, editing, and presenting the results of inference, that translate unambiguously to the underlying description logics. This paper discusses the design issues for such semantic network formalisms, and illustrates them through detailed examples of significant generic knowledge structures analyzed in the literature, including determinables, contrast sets, genus/differentiae, taxonomies, faceted taxonomies, cluster concepts, family resemblances, graded concepts, frames, definitions, rules, rules with exceptions, essence and state assertions, opposites and contraries, relevance, and so on. Such examples provide important test material for any visual language formalism for logic.


Visual languages Description logics Semantic networks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen H. (2000) Kuhn’s account of family resemblance: A solution to the problem of wide-open texture. Erkenntnis, 52: 313–337. doi: 10.1023/A:1005546300818 CrossRefGoogle Scholar
  2. Andersen H., Barker P., Chen X. (2006) The cognitive structure of scientific revolutions. Cambridge University Press, CambridgeGoogle Scholar
  3. Asuncion, A., & Newman, D. J. (2007). UCI machine learning repository. Irvine, CA: University of California, School of Information and Computer Science.
  4. Baader F., Sattler U. (2003) Description logics with aggregates and concrete domains. Information Systems, 28: 979–1004. doi: 10.1016/S0306-4379(03)00003-6 CrossRefGoogle Scholar
  5. Barsalou L.W. (1992) Frames, concepts and conceptual fields. In: Lehrer A., Kittay E.F. (eds) Frames, fields, and contrasts: New essays in semantic and lexical organization. N.J: L. Erlbaum, Hillsdale, pp 21–74Google Scholar
  6. Bauer M.I., Johnson-Laird P.N. (1993) How diagrams can improve reasoning. Psychological Science, 4: 372–378. doi: 10.1111/j.1467-9280.1993.tb00584.x CrossRefGoogle Scholar
  7. Baumgartner P., Tinelli C. (2008) The model evolution calculus as a first-order DPLL method. Artificial Intelligence, 172: 591–632. doi: 10.1016/j.artint.2007.09.005 CrossRefGoogle Scholar
  8. Bennett M.R., Hacker P.M.S. (2003) Philosophical foundations of neuroscience. Blackwell, Malden, MAGoogle Scholar
  9. Berlin B., Breedlove D.E., Raven P.H. (1968) Covert categories and folk taxonomies. American Anthropologist, 70: 290–299. doi: 10.1525/aa.1968.70.2.02a00050 CrossRefGoogle Scholar
  10. Bertin J. (1983) Semiology of graphics. University of Wisconsin Press, Madison, WisGoogle Scholar
  11. Besnard P. (1989) An introduction to default logic. Springer, BerlinGoogle Scholar
  12. Boër S.E. (1974) Cluster-concepts and sufficiency definitions. Philosophical Studies, 26: 119–125. doi: 10.1007/BF00355264 CrossRefGoogle Scholar
  13. Borgida A., Brachman R.J., McGuinness D.L., Resnick L.A. (1989) CLASSIC: A structural data model for objects. SIGMOD Record, 18: 58–67. doi: 10.1145/66926.66932 CrossRefGoogle Scholar
  14. Brachman R.J. (1977) What’s in a concept: Structural foundations for semantic networks. International Journal of Man-Machine Studies, 9: 127–152. doi: 10.1016/S0020-7373(77)80017-5 CrossRefGoogle Scholar
  15. Brachman, R. J., & Levesque, H. J. (1984). The tractability of subsumption in frame-based description languages. In Proc. of the 4th National Conference on Artificial Intelligence (AAAI-84) (pp. 34–37).Google Scholar
  16. Broughton V. (2006) The need for a faceted classification as the basis of all methods of information retrieval. Aslib Proceedings: New Information Perspectives, 58(49–72): 58, 49–72Google Scholar
  17. Carnap R. (1950) Logical foundations of probability. University of Chicago Press, ChicagoGoogle Scholar
  18. Cendrowska J. (1987) An algorithm for inducing modular rules. International Journal of Man-Machine Studies, 27: 349–370. doi: 10.1016/S0020-7373(87)80003-2 CrossRefGoogle Scholar
  19. Charniak E., McDermott D.V. (1986) Introduction to artificial intelligence. Addison-Wesley, ReadingGoogle Scholar
  20. Clark, P., Hayes, P., Reichherzer, T., Thompson, J., Barker, K., Porter, B., Chaudhri, V., Rodriguez, A., Thomere, J., & Mishra, S. (2001). Knowledge entry as the graphical assembly of components. In Proceedings of the International Conference on Knowledge Capture (pp. 22–29).Google Scholar
  21. Conklin C.O. (1969) Lexicographical treatment of folk taxonomies. In: Tyler S.A. (eds) Cognitive anthropology. Holt, New York, pp 28–41Google Scholar
  22. Cook, S. A. (1971). The complexity of theorem-proving procedures. In Proceedings of the Third Annual ACM Symposium on Theory of Computing (pp. 151–158).Google Scholar
  23. Cook S.A. (1983) An overview of computational complexity. Communications of the ACM, 26: 401–408. doi: 10.1145/358141.358144 Google Scholar
  24. Cooper D.E. (1972) Definitions and clusters. Mind, 81: 495–503. doi: 10.1093/mind/LXXXI.324.495 CrossRefGoogle Scholar
  25. Davis M., Logemann G., Loveland D. (1962) A machine program for theorem proving. Communications of the ACM, 5: 394–397. doi: 10.1145/368273.368557 CrossRefGoogle Scholar
  26. Donini F.M. (2003) Complexity of reasoning. In: Baader F., Calvanese D., McGuinness D., Nardi D., Patel-Schneider P. (eds) The description logic handbook. Cambridge University Press, Cambridge, pp 96–136Google Scholar
  27. Eisenstadt M., Domingue J., Rajan T., Motta E. (1990) Visual knowledge engineering. Software Engineering. IEEE Transactions on, 16: 1164–1177CrossRefGoogle Scholar
  28. Ernst N.A., Storey M.A., Allen P. (2005) Cognitive support for ontology modeling. International Journal of Human-Computer Studies, 62: 553–577. doi: 10.1016/j.ijhcs.2005.02.006 CrossRefGoogle Scholar
  29. Fodor J.A., Garrett M.F., Walker E.C., Parkes C.H. (1980) Against definitions. Cognition, 8: 263–267. doi: 10.1016/0010-0277(80)90008-6 CrossRefGoogle Scholar
  30. Fox, P., McGuinness, D., Raskin, R., & Sinha, K. (2007). A volcano erupts: semantically mediated integration of heterogeneous volcanic and atmospheric data. Proceedings of the ACM First Workshop on CyberInfrastructure: Information Management in eScience (pp. 1–6).Google Scholar
  31. Frake C.O. (1969) The ethnographic study of cognitive systems. In: Tyler S.A. (eds) Cognitive anthropology. Holt, New York, pp 28–41Google Scholar
  32. Fricke, M. (2003). What are the advantages of Hyperproof-like reasoning systems? British Society Philosophy Science.Google Scholar
  33. Funkhouser E. (2006) The determinable-determinate relation. Nous (Detroit, Mich.), 40: 548–569. doi: 10.1111/j.1468-0068.2006.00623.x Google Scholar
  34. Gaines, B. R. (1991a). Integrating rules in term subsumption knowledge representation servers. In AAAI’91: Proceedings of the Ninth National Conference on Artificial Intelligence (pp. 458–463). Menlo Park, CA: AAAI Press/MIT Press.Google Scholar
  35. Gaines, B. R. (1991b). An interactive visual language for term subsumption visual languages. In IJCAI’91: Proceedings of the Twelfth International Joint Conference on Artificial Intelligence (pp. 817–823). San Mateo, CA: Morgan Kaufmann.Google Scholar
  36. Gaines, B. R. (1993). A class library implementation of a principled open architecture knowledge representation server with plug-in data types. In IJCAI’93: Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence (pp. 504–509). San Mateo, CA: Morgan Kaufmann.Google Scholar
  37. Gaines B.R. (1994) A situated classification solution of a resource allocation task represented in a visual language. International Journal of Human-Computer Studies, 40: 243–271. doi: 10.1006/ijhc.1994.1012 CrossRefGoogle Scholar
  38. Gaines B.R. (1996) Transforming rules and trees into comprehensible knowledge structures. In: Fayyad U.M., Piatetsky-Shapiro G., Smyth P., Uthurusamy R. (eds) Knowledge discovery in Databases II. AAAI/MIT Press, Cambridge MA, pp 205–226Google Scholar
  39. Gaines B.R. (2003) Organizational knowledge acquisition. In: Holsapple C.W. (eds) Handbook on knowledge management: 1. Springer, Berlin, pp 317–347Google Scholar
  40. Gaines, B. R. (2004). Understanding ontologies in scholarly disciplines. In V. Haarslev, & R. Möller (Eds.), Proceedings 2004 International Workshop on Description Logics, DL2004 CEUR-Workshop Proceedings, Whistler, BC.
  41. Gaines B.R., Linster M. (1990) Integrating a knowledge acquisition tool, an expert system shell and a hypermedia system. International Journal of Expert Systems Research and Applications, 3: 105–129Google Scholar
  42. Gaines B.R., Shaw M.L.G. (1993) Eliciting knowledge and transferring it effectively to a knowledge-based systems. IEEE Transactions on Knowledge and Data Engineering, 5: 4–14 doi: 10.1109/69.204087 CrossRefGoogle Scholar
  43. Gaines B.R., Shaw M.L.G. (1995) Concept maps as hypermedia components. International Journal of Human-Computer Studies, 43: 323–361. doi: 10.1006/ijhc.1995.1049 CrossRefGoogle Scholar
  44. Gaines B.R., Shaw M.L.G. (1999) Embedding formal knowledge models in active documents. Communications of the ACM, 42: 57–63. doi: 10.1145/291469.293169 CrossRefGoogle Scholar
  45. Gaines, B. R., & Shaw, M. L. G.(2007). Rep IV research manual. Centre for Person-Computer Studies.
  46. Gangemi A. (2005) Ontology design patterns for semantic web content. In: Gil Y. (eds) Proceedings of the Fourth International Semantic Web Conference: LNCS 3729. Springer, Berlin, pp 262–276Google Scholar
  47. Gaut B. (2000) “Art” as a cluster concept. In: Carroll N. (eds) Theories of art today. University of Wisconsin Press, Madison WI, pp 25–44Google Scholar
  48. Gennari J.H., Musen M.A., Fergerson R.W., Grosso W.E., Crubézy M., Eriksson H., Noy N.F., Tu S.W. (2003) The evolution of Protégé: an environment for knowledge-based systems development. International Journal of Human-Computer Studies, 58: 89–123. doi: 10.1016/S1071-5819(02)00127-1 CrossRefGoogle Scholar
  49. Grau, B. C., Horrocks, I., Kazakov, Y., & Sattler, U.(2007). A logical framework for modularity of ontologies. In Proceedings International Joint Conference Artificial Intelligence, (pp. 298–304).Google Scholar
  50. Guarino N., Welty C.A. (2004) An overview of OntoClean. In: Staab S., Studer R. (eds) Handbook on ontologies. Springer, Berlin, pp 151–171Google Scholar
  51. Haarslev, V., & Moller, R. (2001). RACER system description. In Proceedings of the Internainal Joint Conference on Automated Reasoning (IJCAR 2001) (Vol. 2083, pp. 701–705).Google Scholar
  52. Hanna R. (2006) Rationality and logic. MIT Press, Cambridge, MAGoogle Scholar
  53. Hardin C.L. (1989) Could white be green?. Mind, 98: 185–288Google Scholar
  54. Hayes, P., Eskridge, T. C., Saavedra, R., Reichherzer, T., Mehrotra, M., & Bobrovnikoff, D. (2005). Collaborative knowledge capture in ontologies. In Proceedings of the 3rd International Conference on Knowledge Capture (pp. 99–106).Google Scholar
  55. Hayes, P. J. (1977). In defence of logic. In Proceedings International Joint Conference Artificial Intelligence, (pp. 559–565).Google Scholar
  56. Hayes P.J. (1979) The logic of frames. In: Metzing D. (eds) Frame conceptions and text understanding. de Gruyter, Berlin, pp 46–61Google Scholar
  57. Heilbron J.L., Kuhn T.S. (1969) The genesis of the Bohr atom. Historical Studies in the Physical Sciences, 1: 211–290Google Scholar
  58. Horn L.R. (1989) A Natural history of negation. University of Chicago Press, ChicagoGoogle Scholar
  59. Horrocks, I. (1998). Using an expressive description logic: FaCT or fiction. In Proceedings of the 6th International Conference on Principles of Knowledge Representation and Reasoning (KR’98) (pp. 636–647).Google Scholar
  60. Horrocks I., Patel-Schneider P.F., Bechhofer S., Tsarkov D. (2005) OWL rules: A proposal and prototype implementation. Web Semantics: Science. Services and Agents on the World Wide Web, 3: 23–40. doi: 10.1016/j.websem.2005.05.003 CrossRefGoogle Scholar
  61. Hyman M.D. (2007) Semantic networks: A tool for investigating conceptual change and knowledge transfer in the history of science. In: Böhme H., Rapp C., Rösler W. (eds) Übersetzung und Transformation. de Gruyter, Berlin, pp 355–367Google Scholar
  62. Jamnik M. (2001) Mathematical reasoning with diagrams: From intuition to automation. CSLI, Stanford, CAGoogle Scholar
  63. Johnson W.E. (1921) Logic. Cambridge University Press, CambridgeGoogle Scholar
  64. Johnson-Laird P.N., Byrne R.M.J. (1991) Deduction. Lawrence Erlbaum, Hillsdale, NJGoogle Scholar
  65. Jonassen D.H. (2005) Tools for representing problems and the knowledge required to solve them. In: Tergan S.-O., Keller T. (eds) Knowledge and information visualization: Searching for synergies, LNCS 3426. Springer, Berlin, pp 82–94Google Scholar
  66. Kay P. (1975) A model-theoretic approach to folk taxonomy. Social Sciences Information. Information Sur les Sciences Sociales, 14: 151. doi: 10.1177/053901847501400508 Google Scholar
  67. Keller T., Tergan S.-O. (2005) Visualizing knowledge and information: An introduction. In: Tergan S.-O., Keller T. (eds) Knowledge and information visualization: Searching for synergies, LNCS 3426. Springer, Berlin, pp 1–23Google Scholar
  68. Kelly G.A. (1955) The psychology of personal constructs. Norton, New YorkGoogle Scholar
  69. Kelly G.A. (1970) A brief introduction to personal construct theory. In: Bannister D. (eds) Perspectives in personal construct theory. Academic Press, London, pp 1–29Google Scholar
  70. Khalifa M., Liu V. (2006) Semantic network discussion representation: Applicability and some potential benefits. Professional Communication. IEEE Transactions on, 49: 69–81CrossRefGoogle Scholar
  71. Lu, J., Li, Y., Zhou, B., & Kang, D. (2008). Reasoning within extended fuzzy description logic. Knowledge-Based Systems. doi: 10.1016/j.knosys.2008.04.010.
  72. Lyons J. (1968) Introduction to theoretical linguistics. Cambridge University Press, LondonGoogle Scholar
  73. Macnamara J. (1986) A border dispute: The place of logic in psychology. MIT Press, Cambridge, MAGoogle Scholar
  74. Mason R. (2000) Before logic. State University of New York Press, AlbanyGoogle Scholar
  75. McDermott D. (1987) A critique of pure reason. Computational Intelligence, 3: 151–160. doi: 10.1111/j.1467-8640.1987.tb00183.x CrossRefGoogle Scholar
  76. Meheus J. (2000) An extremely rich paraconsistent logic and the adaptive logic based on it. In: Batens D., Mortensen C., Priest G., Van Bendegen J.-P. (eds) Frontiers of paraconsistent Logic. Research Studies Press, Baldock, pp 189–201Google Scholar
  77. Meheus J. (2003) Inconsistencies and the dynamics of science. Logic and Logical Philosophy, 11: 129–148Google Scholar
  78. Minsky, M. (1974). A framework for representing knowledge. MIT-AI Laboratory Memo 306, Boston.Google Scholar
  79. Mumford S. (1998) Dispositions. Oxford University Press, OxfordGoogle Scholar
  80. Novak, J. D. (1998). Learning, creating, and using knowledge : Concept maps as facilitative tools in schools and corporations. Mahwah: L. Erlbaum Associates.Google Scholar
  81. Parsia, B., & Sirin, E. (2004). Pellet: An OWL DL Reasoner. In Proceedings of the International Workshop on Description Logics Vol. 104.Google Scholar
  82. Pearsall N.R., Skipper J.E.J., Mintzes J.J. (1997) Knowledge restructuring in the life sciences: A longitudinal study of conceptual change in biology. Science Education, 81: 193–215CrossRefGoogle Scholar
  83. Perini L. (2005) The truth in pictures. Philosophy of Science, 72: 262–285. doi: 10.1086/426852 CrossRefGoogle Scholar
  84. Pitt D. (1999) In defense of definitions. Philosophical Psychology, 12: 139–156. doi: 10.1080/095150899105846 CrossRefGoogle Scholar
  85. Pothos E.M., Hahn U. (2000) So concepts aren’t definitions, but do they have necessary or sufficient features. The British Journal of Psychology, 91: 439–450. doi: 10.1348/000712600161925 CrossRefGoogle Scholar
  86. Quillian M.R. (1967) Word concepts: A theory and simulation of some basic semantic capabilities. Behavioral Science, 12: 410–430. doi: 10.1002/bs.3830120511 CrossRefGoogle Scholar
  87. Revlis R., Hayes J.R. (1972) The primacy of generalities in hypothetical reasoning. Cognitive Psychology, 3: 268–290. doi: 10.1016/0010-0285(72)90008-4 CrossRefGoogle Scholar
  88. Richens R.H. (1956) Preprogramming for mechanical translation. Machine Translation, 3: 20–25Google Scholar
  89. Rosch E., Lloyd B.B. (1978) Cognition and categorization. Lawrence Erlbaum, Hillsdale, NYGoogle Scholar
  90. Salmieri, G. (2007). Aristotle on the ontological basis of zoological classification. In Proceedings of Conference Nature and its Classification. Bristol: Bristol University.Google Scholar
  91. Shapiro, S. C. (1991). Case studies of SNePS. Special Issue on Implemented Knowledge Representation and Reasoning Systems, SIGART Bulletin (pp. 128–134).Google Scholar
  92. Sirin E., Parsia B., Grau B.C., Kalyanpur A., Katz Y. (2007) Pellet: A practical OWL-DL reasoner. Web Semantics: Science. Services and Agents on the World Wide Web, 5: 51–53. doi: 10.1016/j.websem.2007.03.004 CrossRefGoogle Scholar
  93. Sotirov V. (1999) Arithmetizations of syllogistic a la Leibniz. Journal Applied Non-Classical Logics, 9: 387–405Google Scholar
  94. Sowa J.F. (2000) Knowledge representation: Logical, philosophical, and computational foundations. Brooks/Cole, Pacific GroveGoogle Scholar
  95. Stenning K. (2002) Seeing reason: Image and language in learning to think. Oxford University Press, OxfordGoogle Scholar
  96. Weitz M. (1977) The opening mind: A philosophical study of humanistic concepts. University of Chicago Press, ChicagoGoogle Scholar
  97. Williams L.V. (1983) Teaching for the two-sided mind: A guide to right brain/left brain education. Prentice-Hall, Englewood Cliffs, N.JGoogle Scholar
  98. Woods W.A. (1975) What’s in a link. In: Bobrow D.G., Collins A. (eds) Representation and understanding. Academic Press, New York, pp 35–82Google Scholar
  99. Zalta E.N. (1988) Intensional logic and the metaphysics of intentionality. MIT Press, Cambridge, MAGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of VictoriaVictoriaCanada

Personalised recommendations