Journal of Logic, Language and Information

, Volume 18, Issue 1, pp 79–95

A Logic of Situated Resource-Bounded Agents

Article

Abstract

We propose a framework for modelling situated resource-bounded agents. The framework is based on an objective ascription of intentional modalities and can be easily tailored to the system we want to model and the properties we wish to specify. As an elaboration of the framework, we introduce a logic, OBA, for describing the observations, beliefs, goals and actions of simple agents, and show that OBA is complete, decidable and has an efficient model checking procedure, allowing properties of agents specified in OBA to be verified using standard theorem proving or model checking techniques.

Keywords

Agents Belief ascription Verification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ågotnes, T. (2004). A logic of finite syntactic epistemic states. PhD Thesis, Department of Informatics, University of Bergen, Norway.Google Scholar
  2. Ågotnes T. and Alechina N. (2007). The dynamics of syntactic knowledge. Journal of Logic and Computation 17(1): 83–116 CrossRefGoogle Scholar
  3. Ågotnes, T., van der Hoek, W., & Wooldridge, M. (2007). Completeness and complexity of multi-modal CTL. In C. Areces & S. Demri (Eds.), Proceedings of the 5th Workshop on Methods for Modalities (M4M5) (pp. 75–90).Google Scholar
  4. Alechina, N., Dastani, M., Logan, B., & Meyer, J.-J. C. (2007). A logic of agent programs. In: Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence (AAAI 2007) (pp. 795–800).Google Scholar
  5. Alechina, N., & Logan, B. (2002). Ascribing beliefs to resource bounded agents. In: Proceedings of the First International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2002) (Vol. 2, pp. 881–888). Bologna.Google Scholar
  6. Blackburn, P., de Rijke, M., & Venema, Y. (2001). Modal logic, Cambridge Tracts in Theoretical Computer Science (Vol. 53). Cambridge University Press.Google Scholar
  7. Clarke, E. M., & Emerson, E. A. (1981). Design and synthesis of synchronization skeletons using branching time temporal logic. In D. Kozen (Ed.), IBM Logics of Programs Workshop (pp. 52–71).Google Scholar
  8. Duc, H. N. (1995). Logical omniscience vs. logical ignorance. On a dilemma of epistemic logic. In C. A. Pinto-Ferreira & N. J. Mamede (Eds.), Progress in Artificial Intelligence, 7th Portuguese Conference on Artificial Intelligence, EPIA ’95, Funchal, Madeira Island, Portugal, October 3-6, 1995, Proceedings, Lecture Notes in Computer Science (Vol. 990, pp. 237–248).Google Scholar
  9. Duc H.N. (1997). Reasoning about rational, but not logically omniscient, agents. Journal of Logic and Computation 7(5): 633–648 CrossRefGoogle Scholar
  10. Elgot-Drapkin J.J. and Perlis D. (1990). Reasoning situated in time I: Basic concepts. Journal of Experimental and Theoretical Artificial Intelligence 2: 75–98 CrossRefGoogle Scholar
  11. Emerson, E., & Lei, C.-L. (1986). Efficient model checking in fragments of the propositional Mu-calculus. In: Proceedings LICS’86 (pp. 267–278).Google Scholar
  12. Fagin R. and Halpern J.Y. (1988). Belief, awareness and limited reasoning. Artificial Intelligence 34: 39–76 CrossRefGoogle Scholar
  13. Fagin R., Halpern J.Y., Moses Y. and Vardi M.Y. (1995). Reasoning about knowledge. MIT Press, Cambridge, MA Google Scholar
  14. Hintikka J. (1962). Knowledge and belief. Cornell University Press, Ithaca, NY Google Scholar
  15. Jamroga, W., & Ågotnes, T. (2007). Modular interpreted systems. In: M. Huhns & O. Shehory (Eds.), Proceedings of the Sixth International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2007) (pp. 892–899).Google Scholar
  16. Konolige K. (1986). A deduction model of belief. Morgan Kaufmann, San Francisco, CA Google Scholar
  17. Lakemeyer, G. (1986). Steps towards a first-order logic of explicit and implict belief. In J. Y. Halpern (Ed.), Theoretical Aspects of Reasoning about Knowledge: Proceedings of the 1986 Conference (pp. 325–340). San Francisco, CA.Google Scholar
  18. Levesque, H. J. (1984). A logic of implicit and explicit belief. In: Proceedings of the Fourth National Conference on Artificial Intelligence, AAAI-84 (pp. 198–202).Google Scholar
  19. McCarthy, J. (1978). Ascribing mental qualities to machines. Technical Report, Stanford AI Lab.Google Scholar
  20. Moore, R. C. (1995). Logic and representation, CSLI Lecture Notes (Vol. 39). CSLI Publications.Google Scholar
  21. Parikh, R. (1987). Knowledge and the problem of logical omniscience. In: Methodologies for Intelligent Systems, Proceedings of the Second International Symposium (pp. 432–439).Google Scholar
  22. Pollack, M. E., Joslin, D., Nunes, A., Ur, S., & Ephrati, E. (1994). Experimental investigation of an agent commitment strategy. Technical Report TR 94-31, University of Pittsburgh, Pittsburgh, PA.Google Scholar
  23. Pollack, M. E., & Ringuette, M. (1990). Introducing the Tileworld: Experimentally evaluating agent architectures. In: Proceedings of the Ninth National Conference on Artificial Intelligence (pp. 183–189). Boston, MA.Google Scholar
  24. Pratt, V. R. (1976). Semantical considerations on Floyd-Hoare logic. In: Proceedings of the Seventeenth IEEE Symposium on Computer Science (pp. 109–121).Google Scholar
  25. Rao, A. S., & Georgeff, M. P. (1991). Modeling rational agents within a BDI-architecture. In: Proceedings of the Second International Conference on Principles of Knowledge Representation and Reasoning (KR’91) (pp. 473–484).Google Scholar
  26. Rosenschein S.J. and Kaelbling L.P. (1995). A situated view of representation and control. Artificial Intelligence 73: 149–173 CrossRefGoogle Scholar
  27. Sierra C., Godo L., de Mántaras R.L. and Manzano M. (1996). Descriptive dynamic logic and its application to reflective architectures. Future Generation Computer Systems 12(2–3): 157–171 CrossRefGoogle Scholar
  28. Singh M.P. (1999). Know-how. In: Wooldridge, M. and Rao, A. (eds) Foundations of Rational Agency, pp 81–104. Kluwer Academic, Dordrecht Google Scholar
  29. van der Hoek W., van Linder B. and Meyer J.-J. C. (1999). An integrated modal approach to rational agents. In: Wooldridge, M. and Rao, A. (eds) Foundations of Rational Agency, pp 133–168. Kluwer Academic, Dordrecht Google Scholar
  30. van Ditmarsch, H., van der Hoek, W., & Kooi, B. (2007). Dynamic epistemic logic, Synthese Library (Vol. 337). Springer.Google Scholar
  31. Wooldridge M. and Lomuscio A. (2001). A computationally grounded logic of visibility, perception and knowledge. Logic Journal of the IGPL 9(2): 273–288 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.School of Computer ScienceUniversity of NottinghamNottinghamUK

Personalised recommendations