Journal of Logic, Language and Information

, Volume 17, Issue 3, pp 237–283 | Cite as

Optionality, Scope, and Licensing: An Application of Partially Ordered Categories

Article

Abstract

This paper uses a partially ordered set of syntactic categories to accommodate optionality and licensing in natural language syntax. A complex but well-studied data set pertaining to the syntax of quantifier scope and negative polarity licensing in Hungarian is used to illustrate the proposal. The presentation is geared towards both linguists and logicians. The paper highlights that the main ideas can be implemented in different grammar formalisms, and discusses in detail an implementation where the partial ordering on categories is given by the derivability relation of a calculus with residuated and Galois-connected unary operators.

Keywords

Partial order Residuation Galois-connection Boolean connectives Typed feature structures Natural language syntax Scope Polarity items Licensing Optionality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Areces C. and Bernardi R. (2004). Analyzing the core of categorial grammar. Journal of Logic, Language and Information, 13(2): 121–137 CrossRefGoogle Scholar
  2. Areces, C., Bernardi, R., & Moortgat, M. (2003). Galois connections in categorial type logic. In G. Kruijff, D. Oehrle, & L. Moss (Eds.), Proceedings of Mathematics of Language and Formal Grammars 2001, Electronic Notes in Theoretical Computer Science, Vol. 53. Elsevier Science B.V.Google Scholar
  3. Baldridge, J. (2002). Lexically specified derivational control in combinatory categorial grammar. Ph.D. Thesis, University of Edinburgh.Google Scholar
  4. Barker C. and Shan C. (2006). Types as graphs: Continuations in type logical grammar. Journal of Logic, Language and Information, 15(4): 331–370 CrossRefGoogle Scholar
  5. Beghelli, F., & Stowell, T. (1997). Distributivity and negation: The syntax of each and every. In A. Szabolcsi (Ed.), Ways of scope taking (Chapt. 3, pp. 72–107). Kluwer.Google Scholar
  6. Bernardi, R. (2002). Reasoning with polarity in categorial type logic. Ph.D. Thesis, UiL, OTS, Utrecht University.Google Scholar
  7. Bernardi, R., & Moortgat, M. (2007). Continuation semantics for symmetric categorial grammar. In D. Leivant & R. de Queiroz (Eds.), Proceedings of the 14th Workshop on Logic, Language, Information and Computation (pp. 53–71) Springer.Google Scholar
  8. Blackburn P. and Spaan E. (1993). A modal perspective on the computational complexity of attribute value grammar. Journal of Logic, Language and Information, 2: 129–169 CrossRefGoogle Scholar
  9. Brody M. and Szabolcsi A. (2003). Overt scope in Hungarian. Syntax, 6: 19–51 CrossRefGoogle Scholar
  10. Büring, D. (2004). Negative inversion. In K. Muir & M. Wolf (Eds.), Proceedings of NELS 34, UMass Amherst, GLSA.Google Scholar
  11. Carpenter, B. (1992). The logic of typed feature structures, Cambridge tracts in theoretical computer science, Vol. 32. Cambridge University Press.Google Scholar
  12. Chomsky N. (1995). The minimalist program. MIT Press, Cambridge Mass Google Scholar
  13. Cinque, G. (1999). Adverbs and functional heads. Oxford.Google Scholar
  14. De Decker, P., Larsson, E., & Martin, A. (2005). Polarity judgments: An empirical view. Workshop on Polarity from different perspectives. NYU, http://www.nyu.edu/gsas/dept/lingu/events/polarity/posters.html.
  15. Dörre J., König E. and Gabbay D. (1996). Fibred semantics for feature-based grammar logic. Journal of Logic, Language and Information, 5: 387–422. Kluwer Academic PublisherCrossRefGoogle Scholar
  16. Dörre, J., & Manandhar, S. (1997). On constraint-based Lambek calculi. In P. Blackburn & M. de Rijke (Eds.), Specifying syntactic structures. Studies in Logic, Language and Information (Chapt. 2, pp. 25–44). Ventura Hall, Stanford, CA 94305: CSLI Publications, Center for the Study of Language and Information.Google Scholar
  17. Dunn, J. (1991). Gaggle theory: An abstraction of Galois connections and residuation with applications to negation and various logical operations. In JELIA 1990: Proceedings of the European Workshop on Logics in Artificial Intelligence (Vol. LNCS 478). Springer.Google Scholar
  18. Fox, D. (1999). Economy and semantic interpretation. MIT Press.Google Scholar
  19. Giannakidou A. (2000). Negative . . . concord?. Natural Language and Linguistic Theory, 18: 457–523 CrossRefGoogle Scholar
  20. Goré R. (1998). Substructural logics on display. Logic Journal of the IGPL. Interest Group in Pure and Applied Logics, 60(3): 451–504 Google Scholar
  21. Hackl, M. (2006). Distinct verification strategies for Most and More Than Half: experimental evidence for a decompositional analysis of quantificational determiners. http://www.linguistics.pomona.edu/mhackl/research.html
  22. Heylen, D. (1999). Types and sorts. Resource logic for feature checking. Ph.D. Thesis, UiL OTS, Utrecht.Google Scholar
  23. Horvath, J. (2000). Interfaces vs. the computational system in the syntax of Focus. In H. Bennis, M. Everaert & E. Reuland (Eds.), Interface strategies (pp. 183–207). The Royal Netherlands Academy of Arts and Sciences.Google Scholar
  24. Horvath, J. (2006). Separating “focus movement” from focus. In S. Karimi, V. Samiian, & W. Wilkins (Eds.), Clever and right: A Festschrift for Joe Emonds. Mouton de Gruyter.Google Scholar
  25. Hunyadi L. (1999). The outlines of a metrical syntax of Hungarian. Acta Linguistica Hungarica, 46: 69–94 CrossRefGoogle Scholar
  26. Johnson M. (1991). Features and formulae. Computational Linguistics, 17(2): 131–151 Google Scholar
  27. Johnson, M., & Bayer, S. (1995). Features and agreement in Lambek categorial grammar. In G. Morrill & Oehrle R. (Eds.), Formal Grammar. Proceedings of the Conference of the European Summer School in Logic, Language and Information (pp. 123–137) ESSLLI 95, Barcelona.Google Scholar
  28. Kaplan R.M. and Bresnan, J. (1982). Lexical-functional grammar: A formal system for grammatical representation. In Bresnan J. (eds) The mental representation of grammatical relations (pp. 173–281). Cambridge, MA: MIT Press.Google Scholar
  29. Kiss, K. É. (1987). Configurationality in Hungarian. Reidel.Google Scholar
  30. Kiss, K. É. (1991). Logical structure in syntactic structure: the case of Hungarian. In J. Huang & R. May (Eds.), Logical structure and linguistic structure (pp. 111–148).Google Scholar
  31. Kiss K.É. (1998). Multiple topics, one focus?. Acta Linguistica Hungarica, 45: 3–31 CrossRefGoogle Scholar
  32. Kiss, K. É. (2001). Focussed number phrases. In C. Féry & W. Sternefeld (Eds.), Audiatur Vox Sapientiae. A Festschrift for Arnim von Stechow, Studia grammatica. Vol. 52 (pp. 259–266) Berlin: Akademie Verlag.Google Scholar
  33. Kiss, K. É. (2002). The Syntax of Hungarian. Cambridge Syntax Guides. Cambridge University Press.Google Scholar
  34. Kiss K.É. (2006). Focussing as predication. In: Molnár, V. and Winkler, S. (eds) The architecture of focus, pp 169–196. Mouton der Gruyter, Berlin Google Scholar
  35. Koopman, H., & Szabolcsi, A. (2000). Verbal complexes. MIT Press.Google Scholar
  36. Kurtonina, N. (1995). Frames and labels. A modal analysis of categorial inference. Ph.D. Thesis, OTS Utrecht University, ILLC Amsterdam University.Google Scholar
  37. Kurtonina N. and Moortgat M. (1995). Structural control. In: Blackburn, P., de Rijke, M. (eds) Logic, structures and syntax. Kluwer, DordrechtGoogle Scholar
  38. Lambek J. (1958). The mathematics of sentence structure. American Mathematical Monthly, 65: 154–170 CrossRefGoogle Scholar
  39. Linebarger M. (1987). Negative polarity and grammatical representation. Linguistics and Philosophy, 10: 325–387 CrossRefGoogle Scholar
  40. Moortgat M. (1997). Categorial Type Logics. In van Benthem J. & A. ter Meulen (eds) Handbook of Logic and Language pp. 93–178. Cambridge: The MIT Press.CrossRefGoogle Scholar
  41. Moortgat, M. (1999). Meaningful patterns. In J. Gerbrandy, M. Marx, M. de Rijke, & Y. Venema (Eds.), Essays dedicated to Johan van Benthem on the occasion of his 50th birthday. University of Amsterdam.Google Scholar
  42. Moortgat, M. (2002). Categorial grammar and formal semantics. Encyclopedia of Cognitive Science. Macmillan.Google Scholar
  43. Moortgat M. and Oehrle R. (1994). Adjacency, dependency and order. In: Dekker, P. and Stokhof, M. (eds) Proceedings of the Ninth Amsterdam Colloquium. Institute for Logic, Language, and Information, AmsterdamGoogle Scholar
  44. Morrill G. (1994). Type logical grammar. Kluwer, Dordrecht Google Scholar
  45. Nam S. (1994). Another type of negative polarity item. In Piñón K. (eds) Dynamics, polarity, and quantification. Stanford, CSLI.Google Scholar
  46. Nilsen, Ø. (2002). Eliminating positions. Ph.D. Thesis, UiL OTS, Utrecht University.Google Scholar
  47. Nilsen Ø. (2004). Domains for adverbs. Lingua, 114(6): 609–847 CrossRefGoogle Scholar
  48. Pollard C. and Sag I.A. (1994). Head-driven phrase structure grammar. University of Chicago Press and CSLI Publications, Chicago, Illinois Google Scholar
  49. Progovac L. (1994). Negative and positive polarity: A binding approach. Cambridge University Press, Cambridge Google Scholar
  50. Puskas, G. (2000). Word order in Hungarian. John Benjamins.Google Scholar
  51. Reinhart T. (1997). Quantifier scope: How labor is divided between QR and choice functions. Linguistic and Philosophy, 20(4): 335–397 CrossRefGoogle Scholar
  52. Reinhart, T. (2006). Interface strategies. MIT Press.Google Scholar
  53. Stabler, E. (1997). Computing quantifier scope. In A. Szabolcsi (Ed.), Ways of scope taking (pp. 155–183). Kluwer.Google Scholar
  54. Surányi, B. (2003). Multiple operator movements in Hungarian. Ph.D. Thesis, UiL OTS, Utrecht University.Google Scholar
  55. Szabolcsi A. (1981). The semantics of topic-focus articulation. In: Groenendijk, J., Janssen, T. and Stokhof, M. (eds) Formal methods in the study of language, pp 513–541. Mathematisch Centrum, Amsterdam Google Scholar
  56. Szabolcsi, A. (1997). Strategies for scope taking. In A. Szabolcsi (Ed.), Ways of scope taking (pp. 109–154). Kluwer.Google Scholar
  57. Uszkoreit, H. (1986). Categorial unification grammars. In Proceedings of the 11th Conference on Computational Linguistics (pp. 187–194). Association for Computational Linguistics, Morristown, NJ, USA.Google Scholar
  58. Wouden, T. v. d. (1997). Negative contexts. Routlegde.Google Scholar
  59. Zwarts F. (1983). Three types of polarity. In: Hamm, F. and Hinrichs, E. (eds) Plural quantification, pp 177–238. Kluwer, Dordrecht Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Faculty of Computer ScienceFree University of Bozen-BolzanoBozen-BolzanoItaly
  2. 2.Department of LinguisticsNew York UniversityNew YorkUSA

Personalised recommendations