Journal of Logic, Language and Information

, Volume 17, Issue 2, pp 131–140 | Cite as

A Remark on Collective Quantification

Open Access


We consider collective quantification in natural language. For many years the common strategy in formalizing collective quantification has been to define the meanings of collective determiners, quantifying over collections, using certain type-shifting operations. These type-shifting operations, i.e., lifts, define the collective interpretations of determiners systematically from the standard meanings of quantifiers. All the lifts considered in the literature turn out to be definable in second-order logic. We argue that second-order definable quantifiers are probably not expressive enough to formalize all collective quantification in natural language.


Collective quantification Lindström quantifiers Second-order generalized quantifiers Type-shifting Definability Computational complexity 


Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution,and reproduction in any medium, provided the original author(s) and source are credited.


  1. Andersson A. (2002). On second-order generalized quantifiers and finite structures. Annals of Pure and Applied Logic 115(1–3): 1–32CrossRefGoogle Scholar
  2. Bartsch R. (1973). The semantics and syntax of number and numbers. In: Kimball J.P. (ed) Syntax and semantics 2. New York, Seminar Press, pp. 51–93Google Scholar
  3. Ben-Avi G., Winter Y. (2003). Monotonicity and collective quantification. Journal of Logic, Language and Information 12(2): 127–151CrossRefGoogle Scholar
  4. Bennett M. (1974). Some extensions of a Montague fragment of English. PhD thesis. University of California, Los AngelesGoogle Scholar
  5. van Benthem, J. (1995). Language in action. Cambridge, MA: MIT Press. Categories, lambdas and dynamic logic, Revised reprint of the 1991 original.Google Scholar
  6. Burtschick H.-J., Vollmer H. (1998). Lindström quantifiers and leaf language definability. International Journal of Foundations of Computer Science 9(3): 277–294CrossRefGoogle Scholar
  7. van der Does, J. (1992). Applied quantifier logics. Collectives and naked infinitives. PhD thesis, Universiteit van Amsterdam.Google Scholar
  8. van der Does J. (1993). Sums and quantifiers. Linguistics and Philosophy 16(5): 509–550CrossRefGoogle Scholar
  9. Hella L., Väänänen J., Westerstähl D. (1997). Definability of polyadic lifts of generalized quantifiers. Journal of Logic, Language and Information 6(3): 305–335CrossRefGoogle Scholar
  10. Kontinen, J. (2004). Definability of second order generalized quantifiers. To appear in Archive for Mathematical Logic.Google Scholar
  11. Kontinen, J., & Niemistö, H. (2006). Extensions of MSO and the monadic counting hierarchy. Manuscript available at
  12. Lindström P. (1966). First order predicate logic with generalized quantifiers. Theoria 32: 186–195Google Scholar
  13. Link G. (1983). The logical analysis of plurals and mass terms: A lattice-theoretical approach. In: Bäuerle R., Schwarze C., von Stechow A. (eds) Meaning, use, and interpretation of language. Berlin, Gruyter, pp. 302–323Google Scholar
  14. Lønning J. T. (1997). Plurals and collectivity. In: van Benthem J., ter Meulen A., (eds) Handbook of logic and language. Amsterdam, Elsevier, pp. 1009–1054Google Scholar
  15. Mostowski M., Wojtyniak D. (2004). Computational complexity of the semantics of some natural language constructions. Annals of Pure and Applied Logic 127(1–3): 219–227CrossRefGoogle Scholar
  16. Partee B., Rooth M. (1983). Generalized conjunction and type ambiguity. In: Bäuerle R., Schwarze C., von Stechow A. (eds) Meaning, use, and interpretation of language. Berlin, Gruyter, pp. 361–383Google Scholar
  17. Russell B. (1903). The principles of mathematics. Cambridge, Cambridge University PressGoogle Scholar
  18. Scha, R. (1981). Distributive, collective and cumulative quantification. In J. A. G. Groenendijk, T. M. V. Janssen, & M. B. J. Stokhof (Eds.), Formal methods in the study of language, Part 2 (pp. 483–512). Amsterdam: Mathematisch Centrum.Google Scholar
  19. Sevenster, M. (2006). Branches of imperfect information: Logic, games, and computation. PhD thesis, Universiteit van Amsterdam.Google Scholar
  20. Stockmeyer, L. J. (1976). The polynomial-time hierarchy. Theoretical Computer Science, 3(1), 1–22 (1977).Google Scholar
  21. Szymanik J. (2007). A comment on a neuroimaging study of natural language quantifier comprehension. Neuropsychologia 45(9): 2158–2160CrossRefGoogle Scholar
  22. Toda S. (1991). PP is as hard as the polynomial-time hierarchy. SIAM Journal on Computing 20(5): 865–877CrossRefGoogle Scholar
  23. Westerståhl D., Peters S. (2006). Quantifiers in language and logic. Oxford, Clarendon PressGoogle Scholar
  24. Winter Y. (2001). Flexibility principles in Boolean semantics. London, The MIT PressGoogle Scholar

Copyright information

© The Author(s) 2008

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of HelsinkiHelsinkiFinland
  2. 2.Institute for Logic, Language and ComputationUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.Institute of PhilosophyWarsaw UniversityWarsawPoland

Personalised recommendations