Journal of Logic, Language and Information

, Volume 16, Issue 4, pp 465–485 | Cite as

The German Vorfeld and Local Coherence

  • Katja FilippovaEmail author
  • Michael Strube


We present a method for improving local coherence in German with a positive effect on automatically as well as human-generated texts. We demonstrate that local coherence crucially depends on which constituent occupies the initial position in a sentence. To support our hypothesis, we provide statistical evidence based on a corpus investigation and on results of an experiment with human judges. Additionally, we implement our findings in a generation module for determining the Vorfeld constituent automatically.


Local coherence Constituent order Vorfeld German Natural language generation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barzilay R., Elhadad N., McKeown K.R. (2002). Inferring strategies for sentence ordering. Journal of Artificial Intelligence Research 17: 35–55Google Scholar
  2. Berger A., Della Pietra S.A., Della Pietra V.J. (1996). A maximum entropy approach to natural language processing. Computational Linguistics 22(1): 39–71Google Scholar
  3. Brants, T. (2000). TnT–A statistical Part-of-Speech tagger. In Proceedings of the 6th Conference on Applied Natural Language Processing, Seattle, Wash., 29 April – 4 May 2000. pp. 224–231.Google Scholar
  4. Chafe W. (1976). Givenness, contrastiveness, definiteness, subjects, topics, and point of view. In: Li C (eds) Subject and topic. New York NY, Academic Press, pp. 25–55Google Scholar
  5. Chafe W. (1987). Cognitive constraints on information flow. In: Tomlin R.S. (eds) Coherence and grounding in discourse. Amsterdam, The Netherlands, John Benjamins, pp. 21–52Google Scholar
  6. Drach E. (1937). Grundlagen der deutschen Satzlehre. Frankfurt/Main, Germany, DiesterwegGoogle Scholar
  7. Filippova, K. & Strube, M. (2007). Generating constituent order in German clauses. In Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics, Prague, Czech Republic, 23–30 June 2007. (To appear).Google Scholar
  8. Firbas, J. (1974). Some aspects of the Czechoslovak approach to problems of functional sentence prespective. In Danes, F. (Ed.), Papers on functional sentence perspective. (pp. 11–37) Prague: Academia.Google Scholar
  9. Foth, K., & Menzel, W. (2006). Hybrid parsing: Using probabilistic models as predictors for a symbolic parser. In Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics, Sydney, Australia, 17–21 July 2006, pp. 321–327.Google Scholar
  10. Frey W. (2004). A medial topic position for German. Linguistische Berichte 198: 153–190Google Scholar
  11. Gernsbacher M. A., Hargreaves D.J. (1988). Accessing sentence participants: The advantage of first mention. Journal of Memory and Language 27: 699–717Google Scholar
  12. Givon, T. (1983). Topic continuity in spoken English. In Givon, T. (Ed.), Topic continuity in discourse: A quantitative cross-language study. Amsterdam, The Netherlands: John Benjamins.Google Scholar
  13. Graesser A.C., Singer M., Trabasso T. (1994). Constructing inferences during narrative text comprehension. Psychological Review 101(3): 371–395Google Scholar
  14. Grosz B.J., Joshi A.K., Weinstein S. (1995). Centering: A framework for modeling the local coherence of discourse. Computational Linguistics 21(2): 203–225Google Scholar
  15. Gundel, J. K. (1998). Centering theory and the givenness hierarchy: Towards a synthesis. In Walker, M., Joshi, A., & Prince, E. (Eds.), Centering in discourse (pp. 183–198). Oxford, U.K.: Oxford University Press.Google Scholar
  16. Gundel J.K., Hedberg N., Zacharski R. (1993). Cognitive status and the form of referring expressions in discourse. Language 69: 274–307CrossRefGoogle Scholar
  17. Hajičová E., Skoumalová H., Sgall P. (1995). An automatic procedure for topic-focus identification. Computational Linguistics 21(1): 81–94Google Scholar
  18. Halliday M.A.K. (1985). Introduction to functional grammar. London, UK, ArnoldGoogle Scholar
  19. Hockett C.F. (1958). A course in modern linguistics. New York, NY, MacmillanGoogle Scholar
  20. Hoffman, B. (1998). Word order, information structure, and centering in Turkish. In Walker, M., Joshi, A., & Prince, E. (Eds.), Centering theory in discourse (pp. 251–271) Oxford, U.K.: Oxford University Press.Google Scholar
  21. Jacobs J. (2001). The dimensions of topic-comment. Linguistics 39(4): 641–681CrossRefGoogle Scholar
  22. Karamanis, N., Poesio, M. Mellish, C. & Oberlander, J.: 2004, ‘Evaluating centering-based metrics of coherence for text structuring using a reliably annotated corpus. In Proceedings of the 42nd Annual Meeting of the Association for Computational Linguistics, Barcelona, Spain, 21–26 July 2004, pp. 392–393.Google Scholar
  23. Kempen, G., & Harbusch, K. (2004). How flexible is constituent order in the midfield of German subordinate clauses? A corpus study revealing unexpected rigidity. In Proceedings of the International Conference on Linguistic Evidence, Tübingen, Germany, 29–31 January 2004, pp. 81–85.Google Scholar
  24. Kohavi, R., & Sahami, M. (1996). Error-based and entropy-based discretization of continuous features. In Proceedings of the 2nd International Conference on Data Mining and Knowledge Discovery, Portland, Oreg., 2–4 August, 1996, pp. 114–119.Google Scholar
  25. Kruijff, G.-J., Kruijff-Korbayová, I., Bateman, J., & Teich, E. (2001). Linear order as higher-level decision: Information structure in strategic and tactical generation. In Proceedings of the 8th European Workshop on Natural Language Generation, Toulouse, France, 6–7 July 2001, pp. 74–83.Google Scholar
  26. Kruijff-Korbayová, I., Kruijff, G.-J., & Bateman, J. (2002). Generation of appropriate word order. In van Deemter, K., & Kibble, R. (Eds.), Information sharing: Reference and presupposition in language generation and interpretation (pp. 193–222). Stanford, Cal.: CSLI.Google Scholar
  27. Lambrecht K. (1994). Information structure and sentence form. Cambridge, UK, Cambridge University PressGoogle Scholar
  28. Lapata, M. (2003). Probabilistic text structuring: Experiments with sentence ordering. In Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics, Sapporo, Japan, 7–12 July 2003, pp. 545–552.Google Scholar
  29. Levinson S.C. (1983). Pragmatics. Cambridge, UK, Cambridge University PressGoogle Scholar
  30. McNamara D.S., Kintsch E., Songer N.B., Kintsch W. (1996). Are good texts always better? Interactions of text coherence, background knowledge, and levels of understanding in learning from text. Cognition and Instruction 14(1): 1–43CrossRefGoogle Scholar
  31. Molnár, V. (1991). Das TOPIK im Deutschen und im Ungarischen. Stockholm, Sweden: Almqvist and Wiksell.Google Scholar
  32. Poesio M., Stevenson R., Di Eugenio B., Hitzeman J. (2004). Centering: A parametric theory and its instantiations. Computational Linguistics 30(3): 309–363CrossRefGoogle Scholar
  33. Postolache, O., Kruijff-Korbayová, I., & Kruijff, G.-J. (2005). Data-driven approaches for information structure identification. In Proceedings of the Human Language Technology Conference and the 2005 Conference on Empirical Methods in Natural Language Processing, Vancouver, B.C., Canada, 6–8 October 2005, pp. 9–16.Google Scholar
  34. Prince, E. F. (1981). Towards a taxonomy of given-new information. In Cole, P. (Ed.) Radical pragmatics (pp. 223–255). New York, NY: Academic Press.Google Scholar
  35. Prince, E. F. (1999). How not to mark topics: ‘Topicalization’ in English and Yiddish. Texas Linguistics Forum.Google Scholar
  36. Rambow, O. (1993). Pragmatic aspects of scrambling and topicalization in German. In Workshop on Centering Theory in Naturally-Occurring Discourse. Institute for Research in Cognitive Science (IRCS), Philadelphia, Penn.: University of Pennsylvania, May 1993.Google Scholar
  37. Ratnaparkhi, A. (2000). Trainable methods for surface natural language generation. In Proceedings of the 1st Conference of the North American Chapter of the Association for Computational Linguistics, Seattle, Wash., 29 April–3 May, 2000, pp. 194–201.Google Scholar
  38. Reinhart T. (1981). Pragmatics and linguistics. An analysis of sentence topics. Philosphica 27(1): 53–94Google Scholar
  39. Ringger, E., Gamon, M., Moore, R. C., Rojas, D., Smets, M., & Corston-Oliver, S. (2004). Linguistically informed statistical models of constituent structure for ordering in sentence realization. In: Proceedings of the 20th International Conference on Computational Linguistics, Geneva, Switzerland, 23–27 August 2004, pp. 673–679.Google Scholar
  40. Schmid, H. (1997). Probabilistic part-of-speech tagging using decision trees. In Jones, D., & Somers, H. (Eds.), New methods in language processing. (pp. 154–164). London, UK: UCL Press.Google Scholar
  41. Sgall, P., Hajicová, E., & Panevová, J. (1986). The meaning of the sentence in its semantic and pragmatic aspects. Dordrecht, The Netherlands: D. Reidel.Google Scholar
  42. Strawson P.F. (1964). Identifying reference and truth-values. In: Steinberg D., Jacobovits L. (eds) Semantics. Cambridge, UK, Cambridge University Press, pp. 86–99Google Scholar
  43. Strube, M., & Ponzetto, S. P. (2006). WikiRelate! computing semantic relatedness using Wikipedia. In Proceedings of the 21st National Conference on Artificial Intelligence, Boston, Mass., 16–20 July 2006, pp. 1419–1424.Google Scholar
  44. Uchimoto, K., Murata, M., Ma, Q., Sekine, S., & Isahara, H. (2000) Word order acquisition from corpora. In Proceedings of the 18th International Conference on Computational Linguistics, Saarbrücken, Germany, 31 July – 4 August 2000, pp. 871–877.Google Scholar
  45. Vallduví E., Engdahl E. (1996). The linguistic realization of information packaging. Linguistics 34: 459–519Google Scholar
  46. Webber B.L., Stone M., Joshi A., Knott A. (2003). Anaphora and discourse structure. Computational Linguistics 29(4): 545–588CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.EML Research gGmbHNLP GroupHeidelbergGermany

Personalised recommendations