Journal of Logic, Language and Information

, Volume 16, Issue 2, pp 141–171 | Cite as

Investigations into a left-structural right-substructural sequent calculus

Original Article


We study a multiple-succedent sequent calculus with both of the structural rules Left Weakening and Left Contraction but neither of their counterparts on the right, for possible application to the treatment of multiplicative disjunction (fission, ‘cotensor’, par) against the background of intuitionistic logic. We find that, as Hirokawa dramatically showed in a 1996 paper with respect to the rules for implication, the rules for this connective render derivable some new structural rules, even though, unlike the rules for implication, these rules are what we call ipsilateral: applying such a rule does not make any (sub)formula change sides—from the left to the right of the sequent separator or vice versa. Some possibilities for a semantic characterization of the resulting logic are also explored. The paper concludes with three open questions.


Substructural logics Multiplicative disjunction Fission Structural rules Sequent calculus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allwein G., Dunn J.M. (1993). Kripke models for linear logic. Journal of Symbolic Logic 58, 514–545CrossRefGoogle Scholar
  2. Avron A. (1988). The semantics and proof theory of linear logic. Theoretical Computer Science 57, 161–187CrossRefGoogle Scholar
  3. Battilotti G., Sambin G. (1999). Basic logic and the cube of its extensions. In Cantini A., et al. (eds) Logic and foundations of Mathematics. Dordrecht, Kluwer, pp. 165–186Google Scholar
  4. Bierman G.M. (1996). A note on full intuitionistic linear logic. Annals of Pure and Applied Logic 79, 281–287CrossRefGoogle Scholar
  5. Blamey S. (2002). Partial Logic. In: Gabbay D.M., Guenthner F.(eds) Handbook of philosophical logic 2nd ed. Vol. 5. Dordrecht, Kluwer, pp. 261–353Google Scholar
  6. Chellas B. (1980). Modal logic: An Introduction. Cambridge, Cambridge University PressGoogle Scholar
  7. Došen K. (1989). Sequent-systems and groupoid models. II. Studia Logica 48, 41–65CrossRefGoogle Scholar
  8. Dunn J.M. (1986). Relevance logic and entailment. In: Gabbay D., Guenthner F.(eds) Handbook of philosophical logic III: Alternatives to classical logic. Dordrecht, Reidel, pp. 117-224Google Scholar
  9. Fine K. (1974). Models for entailment. Journal of Philosophical Logic 3, 347–372CrossRefGoogle Scholar
  10. Gentzen, G. (1934). Untersuchungen über das Logische Schliessen. Math. Zeitschrift, 39, 176–210, 405–431 (English translation in The collected papers of Gerhard Gentzen, ed. M. Szabo, North-Holland, Amsterdam 1969).Google Scholar
  11. Girard J.-Y. (1987). Linear Logic. Theoretical Computer Science 50, 1–102CrossRefGoogle Scholar
  12. Goldblatt R. (1993). Mathematics of Modality. Stanford, California: Center for the Study of Language and InformationGoogle Scholar
  13. Hirokawa, S. (1996). Right weakening and right contraction in LK. In M. E. Houle & P. Eades (Eds.), CATS ’96 (= Australian Computer Science Communications Vol. 18, No. 3, (pp. 167–174).Google Scholar
  14. Humberstone L. (1988). Operational semantics for positive R. Notre Dame Journal of Formal Logic 29, 61–80CrossRefGoogle Scholar
  15. Humberstone L. (1997). Singulary extensional connectives: A closer ook. Journal of Philosophical Logic 26, 341–356CrossRefGoogle Scholar
  16. Humberstone L. (2000). Parts and partitions. Theoria 66, 41–82CrossRefGoogle Scholar
  17. Humberstone L. (2006). Identical twins, Deduction theorems, and pattern functions: Exploring the implicative BCSK Fragment of S5. Journal of Philosophical Logic 35, 435–487CrossRefGoogle Scholar
  18. Hyland M., de Paiva V. (1993). Full intuitionistic linear logic (extended abstract). Annals of Pure and Applied Logic 64, 273–291CrossRefGoogle Scholar
  19. Ishihara H. (2000). A canonical model construction for substructural logics. Journal of Universal Computer Science 6, 177–168Google Scholar
  20. Kashima R. (1997). Contraction-elimination for implicational logics. Annals of Pure and Applied Logic 84, 17–39CrossRefGoogle Scholar
  21. MacCaull W. (1996). Kripke semantics for logics with BCK implication. Bulletin of the Section of Logic 25, 41–51Google Scholar
  22. Ono H., Komori Y. (1985). Logics without the contraction rule. Journal of Symbolic Logic 50, 169–201CrossRefGoogle Scholar
  23. Paoli F. (2002). Substructural Logics: A Primer. Dordrecht, KluwerGoogle Scholar
  24. Rautenberg W. (1981). 2-Element Matrices. Studia Logica 40, 315–353CrossRefGoogle Scholar
  25. Rautenberg W. (1989). A calculus for the common rules of \({\wedge}\) and \({\vee}\) . Studia Logica 48, 531–537CrossRefGoogle Scholar
  26. Restall G. (2000). An Introduction to Substructural Logics. London, RoutledgeGoogle Scholar
  27. Rogerson S. (2003). Investigations into properties of structural rules on the right (Abstract). Bulletin of Symbolic Logic 9: 263Google Scholar
  28. Schotch P.K., Jennings R.E. (1979). Modal logic and the theory of modal aggregation. Philosophia 9, 265–280CrossRefGoogle Scholar
  29. Shoesmith D.J., Smiley T.J. (1971). Deducibility and many-valuedness. Journal of Symbolic Logic 36, 610–622CrossRefGoogle Scholar
  30. Shoesmith D.J., Smiley T.J. (1978). Multiple-Conclusion Logic. Cambridge, Cambridge University PressGoogle Scholar
  31. Surarso B., Ono H. (1996). Cut elimination in noncommutative substructural logics. Reports on Mathematical Logic 30, 13–29Google Scholar
  32. Troelstra, A. S. (1992). Lectures on Linear Logic. CSLI Lecture Notes #29, Stanford University.Google Scholar
  33. Urquhart A. (1972). Semantics for relevant logics. Journal of Symbolic Logic 37, 159–169CrossRefGoogle Scholar
  34. Wójcicki R. (1974). Note on deducibility and many-valuedness. Journal of Symbolic Logic 39, 563–566CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media 2007

Authors and Affiliations

  1. 1.Department of PhilosophyMonash UniversityClaytonAustralia

Personalised recommendations