Advertisement

Synthesis and spectroscopic studies of furan-bridged polyazamacrocycles through 15,16-bis((prop-2-ynylamino)methyl)labdatriene transformations

  • Olga I. Brusentzeva
  • Yurii V. Kharitonov
  • Dmitry S. Fadeev
  • Elvira E. ShultsEmail author
Original Article
  • 17 Downloads

Abstract

The design and the preparation of a small library of optically active polyazamacrocyclic compounds with a furan bridge, connected by (4-(methylaminomethyl)-1,2,3-triazole) rings with methylene, ethyloxyethyl or ethylethoxyethyl units from natural labdanoid lambertianic acid is reported. The synthesis of the key 15,16-bis((tert-butoxycarbonyl(prop-2-ynyl)amino)methyl)labda-8(9),13,15-labdatriene from the plant diterpenoid lambertianic acid is also described. CuAAC reaction of this compounds with various diazides in the presence of Cu(II)/sodium ascorbate in methylene chloride/water reaction medium led to the mentioned chiral macrocyclic compounds with a furan bridge binding Zn2+ ions in solution.

Graphic abstract

Keywords

Macroheterocycles Diterpenoids Furanolabdanoid dialkynes Diazides CuAAC reaction Zinc ion 

Notes

Acknowledgements

This work was performed under financial support in part from the Russian Federation of Basic Research (projects No 18-03-01012) and the Russian Science Foundation and the Government of the Novosibirsk Region (research project No 17-43-543235). Authors would like to acknowledge the Multi-Access Chemical Service Center SB RAS for spectral and analytical measurements.

Supplementary material

10847_2019_965_MOESM1_ESM.doc (4.3 mb)
Supplementary material 1—Experimental procedures, characterization data, and copies of 1H and 13C NMR spectra for new compounds (DOC 4362 kb)

References

  1. 1.
    Hill, T.A., Shepherd, N.E., Diness, F., Fairlie, D.P.: Constraining cyclic peptides to mimic protein structure motifs. Angew. Chem. Int. Ed. 53, 13020–13041 (2014)CrossRefGoogle Scholar
  2. 2.
    Shan, C.-L., Yang, B., Sun, W.-Q., Xiao, X., Tao, Z., Liu, J.-X.: 1,3-Propanediammonium and 1,12-dodecanediammonium encapsulated in the cavity of symmetrical α, α’, δ, δ’-tetramethyl-cucurbit[6]uril. Supramol. Chem. 27, 606–612 (2015)CrossRefGoogle Scholar
  3. 3.
    Nahar, L., Sarker, S.D.: Steroid dimers: chemistry and applications in drug delivery. Wiley, Chichester (2012)CrossRefGoogle Scholar
  4. 4.
    Khaybullin, R.N., Strobykina, IYu., Dobrynin, A.B., Gubaydullin, A.T., Chestnova, R.V., Babaev, V.M., Kataev, V.E.: Synthesis and antituberculosis activity of novel unfolded and macrocyclic derivatives of ent-kaurane steviol. Bioorg. Med. Chem. Lett. 22, 6909–6913 (2012)CrossRefGoogle Scholar
  5. 5.
    Garifullin, B.F., Sharipova, R.R., Strobykina, IYu., Andreeva, O.V., Kravchenko, M.A., Kataev, V.E.: Russ. J. Org. Chem. 51, 1488–1493 (2015)CrossRefGoogle Scholar
  6. 6.
    Garifullin, B.F., Strobykina, IYu., Sharipova, R.R., Kravchenko, M.A., Kataev, V.E.: The first macrocyclic glycoterpenoid having glucosamine and isosteviol moieties. Macroheterocycles 9, 320–322 (2016)CrossRefGoogle Scholar
  7. 7.
    Lohoelter, C., Brutschy, M., Lubczyk, D., Waldvogel, S.R.: Novel supramolecular affinity materials based on (−)-isosteviol as molecular templates. Beilstein J. Org. Chem. 9, 2821–2833 (2013)CrossRefGoogle Scholar
  8. 8.
    Wang, H., Tian, X., Yang, D., Pan, Y., Wu, Q., He, C.: Synthesis and enantiomeric recognition ability of 22-crown-6 ethers derived from rosin acid and BINOL. Tetrahedron Asymmetry 22, 381–386 (2011)CrossRefGoogle Scholar
  9. 9.
    Wang, H., He, C., Pan, Y., Yao, C., Wu, Q., Deng, H.: Synthesis and amines enantiomeric recognition ability of binaphthyl-appended 22-crown-6 ether derived from rosin acid. J. Incl. Phenom. Macrocycl. Chem. 73, 177–183 (2012)CrossRefGoogle Scholar
  10. 10.
    Liu, L., He, C., Yang, L., Huang, Y., Wu, Q., Duan, W., Wang, H., Pan, Y.: Novel C1 chiral crown ethers bearing rosin acids groups: synthesis and enantiomeric recognition for ammonium salts. Tetrahedron 70, 9545–9553 (2014)CrossRefGoogle Scholar
  11. 11.
    Shults, E.E., Mironov, M.E., Kharitonov, YuV: Furanoditerpenoids of the labdane series: occurrence in plants, total synthesis, several transformations and biological activity. Chem. Nat. Compd. 50, 2–21 (2014)CrossRefGoogle Scholar
  12. 12.
    Kharitonov, Y.V., Shul’ts, E.E., Shakirov, M.M., Bagryanskaya, I.Y., Tolstikov, G.A.: First synthesis of macrocyclic furanolabdanoids via cycloaddition of diacetylenic derivatives of lambertianic acid to 1,5-diazidopentane. Dokl. Chem. 446, 174–179 (2012)CrossRefGoogle Scholar
  13. 13.
    Kharitonov, YuV, Shakirov, M.M., Shults, E.E.: Synthesis of macroheterocyclic compounds with a furan bridge possessing structural fragments of 1,2,3-triazoles and natural diterpenoids. Macroheterocycles 8, 81–88 (2015)CrossRefGoogle Scholar
  14. 14.
    Kharitonov, Y.V., Shakirov, M.M., Shults, E.E.: Synthesis and spectroscopic studies of chiral macrocyclic furanolabdanoids connected on the 16, 17-positions by 1, 2, 3-triazole rings with methylene or oxamethylene units. J. Incl. Phenom. Macrocycl. Chem. 84, 197–202 (2016)CrossRefGoogle Scholar
  15. 15.
    Kharitonov, YuV, Shakirov, M.M., Pokrovskii, M.A., Pokrovskii, A.G., Shul’ts, E.E.: Chem. Nat. Compd. 53, 77–82 (2017)CrossRefGoogle Scholar
  16. 16.
    Kharitonov, YuV, Shakirov, M.M., Shults, E.E.: Macroheterocycles 10, 117–122 (2017)CrossRefGoogle Scholar
  17. 17.
    Peng, R., Xu, Y., Cao, Q.: Chin. Chem. Lett. 29, 1465–1474 (2018)CrossRefGoogle Scholar
  18. 18.
    McAulay, K., Clark, J.S.: Chem. Eur. J. 23, 9761–9765 (2017)CrossRefGoogle Scholar
  19. 19.
    Mironov, M.E., Kharitonov, Y.V., Shults, E.E., Shakirov, M.M., Gatilov, Y.V., Tolstikov, G.A.: Synthetic transformations of higher terpenoids: XXIII. Synthesis of diterpenoid-based dihydroisoindolones. Russ. J. Org. Chem. 46, 1869–1882 (2010)CrossRefGoogle Scholar
  20. 20.
    Yu, M., Nagalingam, G., Ellis, S., Martinez, E., Sintchenko, V., Spain, M., Rutledge, P.J., Todd, M.H., Triccas, J.A.: Nontoxic metal − cyclam complexes, a new class of compounds with potency against drug-resistant mycobacterium tuberculosis. J. Med. Chem. 59, 5917–5921 (2016)CrossRefGoogle Scholar
  21. 21.
    Terenzi, A., Lauria, A., Almerico, A.M., Barone, G.: Zinc complexes as fluorescent chemosensors for nucleic acids: new perspectives for a “boring” element. Dalton Trans. 44, 3527–3535 (2014)CrossRefGoogle Scholar
  22. 22.
    Dahmani, R., Yaghlane, S.B., Boughdiri, S., Al-Mogren, M.M., Prakash, M., Hochlaf, M.: Insights on the interaction of Zn2 + cation with triazoles: structures, bonding, electronic excitation and applications. Spectrochim Acta A 193, 375–384 (2018)CrossRefGoogle Scholar
  23. 23.
    Batista, L.C., de Souza, F.S., de Assis, V.M., Seabra, S.H., Bortoluzzi, A.J., Rennó, M.N., Horn Jr., A., DaMatta, R.A., Fernandes, C.: Antiproliferative activity and conversion of tachyzoite to bradyzoite of Toxoplasma gondii promoted by new zinc complexes containing sulfadiazine. RSC Adv. 5, 100606–100617 (2015)CrossRefGoogle Scholar
  24. 24.
    Nahid, N., Bhat, S.A., Kareem, A., Dhyani, S., Mohammad, A., Mirza, A.U.: Synthesis, characterization and biological analysis of transition metal complexes with macrocyclic ligands derived from adipic acid, ethylenediamine with diethyloxalate and diethylmalonate. J. Incl. Phenom. Macrocycl. Chem. 92, 395–409 (2018)CrossRefGoogle Scholar
  25. 25.
    Hynes, M.J.: A Computer program for the calculation of stability constants from nuclear magnetic resonance chemical shift data. J. Chem. Soc. Dalton Trans. 2, 311–318 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Laboratory of Medicinal ChemistryNovosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations