In vitro transdermal permeation behavior of isosorbide dinitrate in the absence and presence of 2-hydroxypropyl-β-cyclodextrin: solutions and suspensions

  • Katsutoshi Zao
  • Takako Ishiguro
  • Daisuke Iohara
  • Makoto Anraku
  • Hakaru Seo
  • Tetsumi Irie
  • Kaneto Uekama
  • Fumitoshi HirayamaEmail author
Original Article


Interactions of a vasodilator, isosorbide dinitrate (ISDN), with the parent α-, β- and γ-cyclodextrins (α-, β- and γ-CDs) and 2-hydroxypropyl-α- and -β- and γ-CDs (HP-α- and -β- and -γ-CDs) and the dissolution properties of ISDN/β-CD complexes were investigated. The effects of HP-β-CD on the in vitro transdermal permeation of the drug in the forms of solutions and suspensions were also investigated using skin from hairless mice. The size dependent guest–host interactions of CDs were clearly reflected in the stoichiometry of the complexes, i.e. ISDN interacted with two α-CD molecules (which have small cavities) to form a 1:2 (guest:host) complex, while β-CD formed a 1:1 complex. Meanwhile, the large γ-CD cavity included two ISDN molecules to form a 2:1 complex. In the solid state, ISDN was included in a columnar channel formed by the stacking of the parent β-CD, while the HP-β-CD complex was in an amorphous state. The dissolution of ISDN in water increased in the order of the drug alone < the β-CD complex < the HP-β-CD complex. The permeation of ISDN through the skin of hairless mice was significantly decreased in the case of the HP-β-CD, when the drug was in solution. On the other hand, when the drug was in the form of a suspension, the permeation was enhanced by HP-β-CD complexation. The permeation of ISDN in the presence of HP-β-CD in solutions and in suspensions was slightly increased, when oleic acid or linoleic acid were added to the suspension. These results suggest that HP-β-CD complexation has a positive effect on the percutaneous permeation of ISDN when the drug is in the form of a suspension, while the effect is negative when a solution is involved.


Isosorbide dinitrate Cyclodextrin Inclusion complex Size dependency Dissolution Skin permeation Transdermal delivery 



  1. 1.
    Khan, M.S., Roberts, M.S.: Challenges and innovations of drug delivery in older age. Adv. Drug Deliv. Rev. 135, 3–38 (2018)CrossRefGoogle Scholar
  2. 2.
    Kumar, L., Verma, S., Chalotra, T., Utreza, P.: Advanced drug delivery systems for transdermal delivery of nonsteroidal anti-inflammatory drugs: a review. Curr. Drug Deliv. 15, 1087–1099 (2018)CrossRefGoogle Scholar
  3. 3.
    Watkinson, A.C., Kearney, M.C., Quinn, H., Coutenary, A.J., Donnelly, R.F.: Future of the transdermal drug market–have we barely touched the surface? Expert Opin. Drug Deliv. 13, 523–532 (2016)CrossRefGoogle Scholar
  4. 4.
    Elshafeey, A.H., Mamza, Y.E., Amin, S.Y., Zia, H.: In vitro transdermal permeation of fenoterol hydrobromide. J. Adv. Res. 3, 125–132 (2012)CrossRefGoogle Scholar
  5. 5.
    Zhang, D., Lv, P., Zhou, C., Zhao, Y., Liao, X., Yang, B.: Cyclodextrin-based delivery systems for cancer treatment. Mater. Sci. Eng. C 96, 872–886 (2019)CrossRefGoogle Scholar
  6. 6.
    Jansook, P., Ogawa, N., Loftsson, T.: Cyclodextrins: structure, physicochemical properties and pharmaceutical applications. Int. J. Pharm. 535, 272–284 (2018)CrossRefGoogle Scholar
  7. 7.
    Adeoye, O., Cabral-Marques, H.: Cyclodextrin nanosystems in oral drug delivery: a mini review. Int. J. Pharm. 531, 521–531 (2017)CrossRefGoogle Scholar
  8. 8.
    Crini, G.: A history of cyclodextrins. Chem. Rev. 114, 10940–10975 (2014)CrossRefGoogle Scholar
  9. 9.
    Zhang, J., Ma, P.X.: Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Adv. Drug Deliv. Rev. 65, 1215–1233 (2013)CrossRefGoogle Scholar
  10. 10.
    Szente, L., Szejtli, J.: Highly soluble cyclodextrin derivatives: chemistry, properties, and trends in development. Adv. Drug Deliv. Rev. 36, 17–28 (1999)CrossRefGoogle Scholar
  11. 11.
    Uekama, K., Hirayama, F., Irie, T.: Cyclodextrin drug carrier systems. Chem. Rev. 98, 2045–2076 (1998)CrossRefGoogle Scholar
  12. 12.
    Davis, M.E., Brewster, M.E.: Cyclodextrin-based pharmaceutics: past, present and future. Nat. Rev. Drug Discov. 3, 1023–1035 (2004)CrossRefGoogle Scholar
  13. 13.
    Stella, V.J., He, Q.: Cyclodext. Toxicol. Phathol. 36, 30–42 (2008)CrossRefGoogle Scholar
  14. 14.
    Luke, D.R., Tomaszewski, K., Damle, B., Schlamn, H.T.: Review of the basic and clinical pharmacology of sulfobutyl-β-cyclodextrin (SBECD). J. Pharm. Sci. 99, 3291–3301 (2010)CrossRefGoogle Scholar
  15. 15.
    Murthy, S.N., Zhao, Y.-L., Sen, A., Hui, S.W.: Cyclodextrin enhanced transdermal delivery of piroxicam and carbopxyfluorescein by electroporation. J. Control. Release 99, 393–402 (2004)CrossRefGoogle Scholar
  16. 16.
    Lopez, R.F.V., Collett, J.H., Vitoria, M., Bentley, L.B.: Influence of cyclodextrin complexation on the in vitro permeation and skin metabolism of dexamethasone. Int. J. Pharm. 200, 127–132 (2000)CrossRefGoogle Scholar
  17. 17.
    Vollmer, U., Muller, B.W., Mesens, J., Wilffert, B., Peters, T.: In vivo skin pharmacokinetics of liarozole: percutaneous absorption studies with different formulations of cyclodextrin derivatives in rats. Int. J. Pharm. 99, 51–58 (1993)CrossRefGoogle Scholar
  18. 18.
    Adachi, H., Irie, T., Uekama, K., Manako, T., Yano, T., Saita, M.: Combination effects of O-carboxymethyl-O-ethyl-β-cyclodextrin and penetration enhancer HPE-101 on transdermal delivery of prostaglandin E1 in hairless mice. Eur. J. Pharm. Sci. 1, 117–123 (1993)CrossRefGoogle Scholar
  19. 19.
    Adachi, H., Irie, T., Uekama, K., Manako, T., Yano, T., Saita, M.: Inhibitory effect of prostaglandin E1 on laurate-induced peripheral vascular occlusive sequelae in rabbits: optimized topical formulation with β-cyclodextirn derivative and penetration enhancer HPE-101. J. Pharm. Pharmacol. 44, 1033–1035 (1992)PubMedGoogle Scholar
  20. 20.
    Higuchi, T., Connors, K.A.: Phase-solubility techniques. In: Reilly, C.N. (ed.) Advances in analytical chemistry and instrumentation, pp. 117–212. Marcel Dekker Inc., New York (1965)Google Scholar
  21. 21.
    Connors, K.A.: The stability of cyclodextrin complexes in solution. Chem. Rev. 97, 1325–1357 (1997)CrossRefGoogle Scholar
  22. 22.
    Guarrasi, V., Mangione, M.R., Sanfratello, V., Martorana, V., Bulone, D.: Quantification of underivatized fatty acids from Vegetable oils by HPLC with UV detection. J. Chromatogr. Sci. 48, 663–668 (2010)CrossRefGoogle Scholar
  23. 23.
    Hirayama, F., Uekama, K.: Method of investigating and preparing inclusion compounds. In: Duchene, D. (ed.) Cyclodextrins and their industrial uses, pp. 131–172. Editions de Sante, Paris (1987)Google Scholar
  24. 24.
    Nogami, H., Nagai, T., Yotsuyanagi, Y.: Dissolution phenomena of organic medicinals involving simultaneous phase changes. Chem. Pharm. Bull. 17, 499–509 (1969)CrossRefGoogle Scholar
  25. 25.
    Uekama, K., Adachi, H., Irie, T., Yano, T., Saita, M., Noda, K.: Improved transdermal delivery of prostaglandin E1 through hairless mouse skin: combined use of carboxymethyl-ethyl-β-cyclodextrin and penetraton enhancers. J. Pharm. Pharmacol. 44, 119–121 (1992)CrossRefGoogle Scholar
  26. 26.
    Loveday, D.E.: An in vitro method for studying percutaneous absorption. J. Soc. Cosmet. Chem. 12, 224–239 (1961)Google Scholar
  27. 27.
    Connors, K.A., Mollica Jr., J.A.: Theoretical analysis of comparative studies of complex formation. J. Pharm. Sci. 55, 772–780 (1966)CrossRefGoogle Scholar
  28. 28.
    Yamamoto, K., Limwikrant, W., Morobe, K.: Analysis of molecular interactions in solid dosage forms; challenge to molecular pharmaceutics. Chem. Pharm. Bull. 59, 147–154 (2011)CrossRefGoogle Scholar
  29. 29.
    Takeo, K., Kuge, T.: Complexes of starchy materials with organic compounds Part III. X-ray studies on amylose and cyclodextrin complexes. Agric. Biol. Chem. 33, 1174–1180 (1969)Google Scholar
  30. 30.
    Higuchi, T., Kristiansen, H.: Binding specificity between small organic solutes in aqueous solution: classification of some solutes into two groups according to binding tendencies. J. Pharm. Sci. 59, 1601–1608 (1970)CrossRefGoogle Scholar
  31. 31.
    Ueda, K., Higashi, K., Yamamoto, K., Moribe, K.: The effect of HPMCAS functional groups on drug crystallization from the supersaturated state and dissolution improvement. Int. J. Pharm. 464, 205–213 (2014)CrossRefGoogle Scholar
  32. 32.
    Ueda, K., Higashi, K., Limwikrant, W., Sekine, S., Horie, T., Yamamoto, K., Moribe, K.: Mechanistic differences in permeation behavior of supersaturated and solubilized solutions of carbamazepine revealed by nuclear magnetic resonance measurements. Mol. Pharm. 9, 3023–3033 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Katsutoshi Zao
    • 1
  • Takako Ishiguro
    • 2
  • Daisuke Iohara
    • 2
  • Makoto Anraku
    • 2
  • Hakaru Seo
    • 2
  • Tetsumi Irie
    • 1
  • Kaneto Uekama
    • 2
  • Fumitoshi Hirayama
    • 2
    Email author
  1. 1.Graduate School of Pharmaceutical SciencesKumamoto UniversityKumamotoJapan
  2. 2.Faculty of Pharmaceutical SciencesSojo UniversityKumamotoJapan

Personalised recommendations