Advertisement

Cucurbiturils in supramolecular catalysis

  • Sebastian Funk
  • Jürgen SchatzEmail author
Review Article
  • 11 Downloads

Abstract

Nearly 80 years following the initial synthesis of cucurbiturils, its structure was finally revealed in 1981, which discovery opened the field for further investigation. As a result, the scope of available sizes and varieties of cucurbiturils has grown profoundly in the last four decades, leading to a large number of potential applications, including cucurbiturils in catalysis as supramolecular additives due to the capability of supramolecular binding to certain substrates. Owing to their polar portals and non-polar cavity, cucurbiturils can have an eclectic range of binding versatile guests of different shapes and electronic structures, making them especially attractive for supramolecular catalysis with a wide range of possible reaction types. This review concisely discusses the unique structure and properties of cucurbiturils, and highlights their use as molecular containers in terms of supramolecular interactions in catalytic reactions such as photoreaction, solvolysis, oxidation, metal-assisted catalysis, bromination, Diels–Alder, xanthene synthesis, and Schiff base reaction.

Keywords

Cucurbituril Supramolecular chemistry Catalysis Molecular recognition Macrocyclic compound Host–guest chemistry 

Notes

Acknowledgements

Generous support of this work by the Interdisciplinary Center for Molecular Materials (ICMM), the Graduate School of Molecular Science (GSMS), both Friedrich-Alexander-Universität Erlangen-Nürnberg, and the „Solar Technologies Go Hybrid“(SolTech) initiative of the Bavarian State is gratefully acknowledged.

References

  1. 1.
    Crini, G.: Review: a history of cyclodextrins. Chem. Rev. 114, 10940–10975 (2014).  https://doi.org/10.1021/cr500081p CrossRefPubMedGoogle Scholar
  2. 2.
    Pedersen, C.J.: Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 89, 7017–7036 (1967).  https://doi.org/10.1021/ja01002a035 CrossRefGoogle Scholar
  3. 3.
    Gutsche, C.D.: Calixarenes. Royal Society of Chemistry, Cambridge (2008)Google Scholar
  4. 4.
    Cram, D.J., Karbach, S., Kim, Y.H., Baczynskyj, L., Kallemeyn, G.W.: Shell closure of two cavitands forms carcerand complexes with components of the medium as permanent guests. J. Am. Chem. Soc. 107, 2575–2576 (1985).  https://doi.org/10.1021/ja00294a076 CrossRefGoogle Scholar
  5. 5.
    Odell, B., Reddington, M.V., Slawin, A.M.Z., Spencer, N., Stoddart, J.F., Williams, D.J.: Cyclobis(paraquat-p-phenylen), ein tetrakationischer Mehrzweckrezeptor. Angew. Chem. 100, 1605–1608 (1988).  https://doi.org/10.1002/ange.19881001132 CrossRefGoogle Scholar
  6. 6.
    Ogoshi, T., Kanai, S., Fujinami, S., Yamagishi, T., Nakamoto, Y.: para-Bridged symmetrical Pillar[5]arenes: their lewis acid catalyzed synthesis and host-guest property. J. Am. Chem. Soc. 130, 5022–5023 (2008).  https://doi.org/10.1021/ja711260m CrossRefPubMedGoogle Scholar
  7. 7.
    Freeman, W.A., Mock, W.L., Shih, N.Y.: Cucurbituril. J. Am. Chem. Soc. 103, 7367–7368 (1981).  https://doi.org/10.1021/ja00414a070 CrossRefGoogle Scholar
  8. 8.
    Breslow, R.: Biomimetic chemistry: biology as an inspiration. J. Biol. Chem. 284, 1337–1342 (2009).  https://doi.org/10.1074/jbc.X800011200 CrossRefPubMedGoogle Scholar
  9. 9.
    Turro, N.J.: Molecular structure as a blueprint for supramolecular structure chemistry in confined spaces. Proc. Natl. Acad. Sci. 102, 10766–10770 (2005).  https://doi.org/10.1073/pnas.0501376102 CrossRefPubMedGoogle Scholar
  10. 10.
    Vriezema, D.M., Comellas Aragonès, M., Elemans, J.A.A.W., Cornelissen, J.J., Rowan, A.E., Nolte, R.J.: Self-assembled nanoreactors. Chem. Rev. 105, 1445–1490 (2005).  https://doi.org/10.1021/cr0300688 CrossRefPubMedGoogle Scholar
  11. 11.
    Davis, A.V., Yeh, R.M., Raymond, K.N.: Supramolecular assembly dynamics. Proc. Natl. Acad. Sci. 99, 4793–4796 (2002).  https://doi.org/10.1073/pnas.052018299 CrossRefPubMedGoogle Scholar
  12. 12.
    Tabushi, I.: Cyclodextrin catalysis as a model for enzyme action. Acc. Chem. Res. 15, 66–72 (1982).  https://doi.org/10.1021/ar00075a001 CrossRefGoogle Scholar
  13. 13.
    Breslow, R.: Biomimetic chemistry and artificial enzymes: catalysis by design. Acc. Chem. Res. 28, 146–153 (1995).  https://doi.org/10.1021/ar00051a008 CrossRefGoogle Scholar
  14. 14.
    Wu, J.-R., Yang, Y.-W.: New opportunities in synthetic macrocyclic arenes. Chem. Commun. 55, 1533–1543 (2019).  https://doi.org/10.1039/C8CC09374A CrossRefGoogle Scholar
  15. 15.
    Isaacs, L.: Stimuli responsive systems constructed using cucurbit[n]uril-type molecular containers. Acc. Chem. Res. 47, 2052–2062 (2014).  https://doi.org/10.1021/ar500075g CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Vallavoju, N., Sivaguru, J.: Supramolecular photocatalysis: combining confinement and non-covalent interactions to control light initiated reactions. Chem. Soc. Rev. 43, 4084 (2014).  https://doi.org/10.1039/c3cs60471c CrossRefPubMedGoogle Scholar
  17. 17.
    Masson, E., Ling, X., Joseph, R., Kyeremeh-Mensah, L., Lu, X.: Cucurbituril chemistry: a tale of supramolecular success. RSC Adv. 2, 1213–1247 (2012).  https://doi.org/10.1039/C1RA00768H CrossRefGoogle Scholar
  18. 18.
    Ni, X.-L., Xiao, X., Cong, H., Liang, L.-L., Cheng, K., Cheng, X.-J., Ji, N.-N., Zhu, Q.-J., Xue, S.-F., Tao, Z.: Cucurbit[n]uril-based coordination chemistry: from simple coordination complexes to novel poly-dimensional coordination polymers. Chem. Soc. Rev. 42, 9480 (2013).  https://doi.org/10.1039/c3cs60261c CrossRefPubMedGoogle Scholar
  19. 19.
    Ni, X.-L., Xiao, X., Cong, H., Zhu, Q.-J., Xue, S.-F., Tao, Z.: Self-assemblies based on the “outer-surface interactions” of cucurbit[n]urils: new opportunities for supramolecular architectures and materials. Acc. Chem. Res. 47, 1386–1395 (2014).  https://doi.org/10.1021/ar5000133 CrossRefPubMedGoogle Scholar
  20. 20.
    Lü, J., Lin, J.-X., Cao, M.-N., Cao, R.: Cucurbituril: a promising organic building block for the design of coordination compounds and beyond. Coord. Chem. Rev. 257, 1334–1356 (2013).  https://doi.org/10.1016/j.ccr.2012.12.014 CrossRefGoogle Scholar
  21. 21.
    Masson, E., Raeisi, M., Kotturi, K.: Kinetics inside, outside and through cucurbiturils. Isr. J. Chem. 58, 413–434 (2018).  https://doi.org/10.1002/ijch.201700120 CrossRefGoogle Scholar
  22. 22.
    Assaf, K.I., Nau, W.M.: Cucurbiturils: from synthesis to high-affinity binding and catalysis. Chem. Soc. Rev. 44, 394–418 (2015).  https://doi.org/10.1039/C4CS00273C CrossRefPubMedGoogle Scholar
  23. 23.
    Barrow, S.J., Kasera, S., Rowland, M.J., del Barrio, J., Scherman, O.A.: Cucurbituril-based molecular recognition. Chem. Rev. 115, 12320–12406 (2015).  https://doi.org/10.1021/acs.chemrev.5b00341 CrossRefPubMedGoogle Scholar
  24. 24.
    Pemberton, B.C., Raghunathan, R., Volla, S., Sivaguru, J.: From containers to catalysts: supramolecular catalysis within cucurbiturils. Chemistry 18, 12178–12190 (2012).  https://doi.org/10.1002/chem.201202083 CrossRefPubMedGoogle Scholar
  25. 25.
    Behrend, R., Meyer, E., Rusche, F.: I. Ueber condensationsproducte aus glycoluril und formaldehyd. Justus Liebig’s Ann. der Chem. 339, 1–37 (1905).  https://doi.org/10.1002/jlac.19053390102 CrossRefGoogle Scholar
  26. 26.
    Kim, J., Jung, I.-S., Kim, S.-Y., Lee, E., Kang, J.-K., Sakamoto, S., Yamaguchi, K., Kim, K.: New cucurbituril homologues: syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n = 5, 7, and 8). J. Am. Chem. Soc. 122, 540–541 (2000).  https://doi.org/10.1021/ja993376p CrossRefGoogle Scholar
  27. 27.
    Day, A., Arnold, A.P., Blanch, R.J., Snushall, B.: Controlling factors in the synthesis of cucurbituril and its homologues. J. Org. Chem. 66, 8094–8100 (2001).  https://doi.org/10.1021/jo015897c CrossRefPubMedGoogle Scholar
  28. 28.
    Chakraborty, A., Wu, A., Witt, D., Lagona, J., Fettinger, J.C., Isaacs, L.: Diastereoselective formation of glycoluril dimers: isomerization mechanism and implications for cucurbit[n]uril synthesis. J. Am. Chem. Soc. 124, 8297–8306 (2002).  https://doi.org/10.1021/ja025876f CrossRefPubMedGoogle Scholar
  29. 29.
    Huang, W., Zavalij, P.Y., Isaacs, L.: Cucurbit[n]uril formation proceeds by step-growth cyclo-oligomerization. J. Am. Chem. Soc. 130, 8446–8454 (2008).  https://doi.org/10.1021/ja8013693 CrossRefPubMedGoogle Scholar
  30. 30.
    Isaacs, L.: Cucurbit[n]urils: from mechanism to structure and function. Chem. Commun. (2009).  https://doi.org/10.1039/b814897j CrossRefGoogle Scholar
  31. 31.
    Isaacs, L.: The mechanism of cucurbituril formation. Isr. J. Chem. 51, 578–591 (2011).  https://doi.org/10.1002/ijch.201100022 CrossRefGoogle Scholar
  32. 32.
    Li, Q., Qiu, S.-C., Zhang, J., Chen, K., Huang, Y., Xiao, X., Zhang, Y., Li, F., Zhang, Y.-Q., Xue, S.-F., Zhu, Q.-J., Tao, Z., Lindoy, L.F., Wei, G.: Twisted cucurbit[n]urils. Org. Lett. 18, 4020–4023 (2016).  https://doi.org/10.1021/acs.orglett.6b01842 CrossRefPubMedGoogle Scholar
  33. 33.
    Ogoshi, T., Yamagishi, T.: Pillararenes. Royal Society of Chemistry, Cambridge (2015)CrossRefGoogle Scholar
  34. 34.
    Lee, J.W., Samal, S., Selvapalam, N., Kim, H.-J., Kim, K.: Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. Acc. Chem. Res. 36, 621–630 (2003).  https://doi.org/10.1021/ar020254k CrossRefPubMedGoogle Scholar
  35. 35.
    Lagona, J., Mukhopadhyay, P., Chakrabarti, S., Isaacs, L.: The cucurbit[n]uril family. Angew. Chem. Int. Ed. 44, 4844–4870 (2005).  https://doi.org/10.1002/anie.200460675 CrossRefGoogle Scholar
  36. 36.
    Bush, M.E., Bouley, N.D., Urbach, A.R.: Charge-mediated recognition of N-terminal tryptophan in aqueous solution by a synthetic host. J. Am. Chem. Soc. 127, 14511–14517 (2005).  https://doi.org/10.1021/ja0548440 CrossRefPubMedGoogle Scholar
  37. 37.
    Flinn, A., Hough, G.C., Stoddart, J.F., Williams, D.J.: Decamethylcucurbit[5]uril. Angew. Chem. Int. Ed. Engl. 31, 1475–1477 (1992).  https://doi.org/10.1002/anie.199214751 CrossRefGoogle Scholar
  38. 38.
    Zhao, J., Kim, H.-J., Oh, J., Kim, S.-Y., Lee, J.W., Sakamoto, S., Yamaguchi, K., Kim, K.: Cucurbit[n]uril derivatives soluble in water and organic solvents. Angew. Chem. Int. Ed. 40, 4233–4235 (2001).  https://doi.org/10.1002/1521-3773(20011119)40:22%3c4233:AID-ANIE4233%3e3.0.CO;2-D CrossRefGoogle Scholar
  39. 39.
    Lewin, V., Rivollier, J., Coudert, S., Buisson, D.A., Baumann, D., Rousseau, B., Legrand, F.X., Kouřilová, H., Berthault, P., Dognon, J.P., Heck, M.P., Huber, G.: Synthesis of cucurbit[6]uril derivatives and insights into their solubility in water. Eur. J. Org. Chem. 2013, 3857–3865 (2013).  https://doi.org/10.1002/ejoc.201300229 CrossRefGoogle Scholar
  40. 40.
    Jon, S.Y., Selvapalam, N., Oh, D.H., Kang, J.-K., Kim, S.-Y., Jeon, Y.J., Lee, J.W., Kim, K.: Facile synthesis of cucurbit[n]uril derivatives via direct functionalization: expanding utilization of cucurbit[n]uril. J. Am. Chem. Soc. 125, 10186–10187 (2003).  https://doi.org/10.1021/ja036536c CrossRefPubMedGoogle Scholar
  41. 41.
    Zhao, N., Lloyd, G.O., Scherman, O.A.: Monofunctionalised cucurbit[6]uril synthesis using imidazolium host–guest complexation. Chem. Commun. 48, 3070 (2012).  https://doi.org/10.1039/c2cc17433b CrossRefGoogle Scholar
  42. 42.
    Miyahara, Y., Goto, K., Oka, M., Inazu, T.: Remarkably facile ring-size control in macrocyclization: synthesis of hemicucurbit[6]uril and hemicucurbit[12]uril. Angew. Chem. Int. Ed. 43, 5019–5022 (2004).  https://doi.org/10.1002/anie.200460764 CrossRefGoogle Scholar
  43. 43.
    Svec, J., Necas, M., Sindelar, V.: Bambus[6]uril. Angew. Chemie Int. Ed. 49, 2378–2381 (2010).  https://doi.org/10.1002/anie.201000420 CrossRefGoogle Scholar
  44. 44.
    Isaacs, L., Park, S., Liu, S., Ko, Y.H., Selvapalam, N., Kim, Y., Kim, H., Zavalij, P.Y., Kim, G.-H., Lee, H., Kim, K.: The inverted cucurbit[n]uril family. J. Am. Chem. Soc. 127, 18000–18001 (2005).  https://doi.org/10.1021/ja056988k CrossRefPubMedGoogle Scholar
  45. 45.
    Huang, W.-H., Zavalij, P.Y., Isaacs, L.: Chiral recognition inside a chiral cucurbituril. Angew. Chem. Int. Ed. 46, 7425–7427 (2007).  https://doi.org/10.1002/anie.200702189 CrossRefGoogle Scholar
  46. 46.
    Huang, W.-H., Liu, S., Zavalij, P.Y., Isaacs, L.: Nor-Seco-Cucurbit[10]uril exhibits homotropic allosterism. J. Am. Chem. Soc. 128, 14744–14745 (2006).  https://doi.org/10.1021/ja064776x CrossRefPubMedGoogle Scholar
  47. 47.
    Biedermann, F., Scherman, O.A.: Model system for studying charge-transfer interactions. J. Phys. Chem. B 116, 2842–2849 (2012).  https://doi.org/10.1021/jp2110067 CrossRefPubMedGoogle Scholar
  48. 48.
    Jeon, Y.-M., Kim, J., Whang, D., Kim, K.: Molecular container assembly capable of controlling binding and release of its guest molecules: reversible encapsulation of organic molecules in sodium ion complexed cucurbituril. J. Am. Chem. Soc. 118, 9790–9791 (1996).  https://doi.org/10.1021/ja962071x CrossRefGoogle Scholar
  49. 49.
    Whang, D., Heo, J., Park, J.H., Kim, K.: A molecular bowl with metal ion as bottom: reversible inclusion of organic molecules in cesium ion complexed cucurbituril. Angew. Chem. Int. Ed. 37, 78–80 (1998).  https://doi.org/10.1002/(SICI)1521-3773(19980202)37:1/2%3c78:AID-ANIE78%3e3.0.CO;2-9 CrossRefGoogle Scholar
  50. 50.
    Gerasko, O.A., Virovets, A.V., Samsonenko, D.G., Tripol’skaya, A.A., Fedin, V.P., Fenske, D.: Synthesis and crystal structures of sumpramolecular compounds of cucurbit[n]urils (n = 6, 8) with polynuclear strontium aqua complexes. Russ. Chem. Bull. 52, 585–593 (2003).  https://doi.org/10.1023/a:1023942303190 CrossRefGoogle Scholar
  51. 51.
    Danylyuk, O., Fedin, V.P.: Solid-state supramolecular assemblies of tryptophan and tryptamine with cucurbit[6]uril. Cryst. Growth Des. 12, 550–555 (2012).  https://doi.org/10.1021/cg2013914 CrossRefGoogle Scholar
  52. 52.
    Liu, J., Long, L., Huang, R., Zheng, L.: Molecular capsules based on cucurbit[5]uril encapsulating “naked” anion chlorine. Cryst. Growth Des. 6, 2611–2614 (2006).  https://doi.org/10.1021/cg060424q CrossRefGoogle Scholar
  53. 53.
    Buschmann, H.-J., Cleve, E., Jansen, K., Schollmeyer, E.: Determination of complex stabilities with nearly insoluble host molecules: cucurbit[5]uril, decamethylcucurbit[5]uril and cucurbit[6]uril as ligands for the complexation of some multicharged cations in aqueous solution. Anal. Chim. Acta 437, 157–163 (2001).  https://doi.org/10.1016/S0003-2670(01)00976-X CrossRefGoogle Scholar
  54. 54.
    Gerasko, O.A., Mainicheva, E.A., Naumova, M.I., Neumaier, M., Kappes, M.M., Lebedkin, S., Fenske, D., Fedin, V.P.: Sandwich-type tetranuclear lanthanide complexes with cucurbit[6]uril: from molecular compounds to coordination polymers. Inorg. Chem. 47, 8869–8880 (2008).  https://doi.org/10.1021/ic8008317 CrossRefPubMedGoogle Scholar
  55. 55.
    Thuéry, P.: Uranyl ion complexes with cucurbit[5]uril: from molecular capsules to uranyl-organic frameworks. Cryst. Growth Des. 9, 1208–1215 (2009).  https://doi.org/10.1021/cg8011603 CrossRefGoogle Scholar
  56. 56.
    Liu, J.-X., Long, L.-S., Huang, R.-B., Zheng, L.-S.: Interesting anion-inclusion behavior of cucurbit[5]uril and its lanthanide-capped molecular capsule. Inorg. Chem. 46, 10168–10173 (2007).  https://doi.org/10.1021/ic701236v CrossRefPubMedGoogle Scholar
  57. 57.
    Samsonenko, D.G., Lipkowski, J., Gerasko, O.A., Virovets, A.V., Sokolov, M.N., Fedin, V.P., Platas, J.G., Hernandez-Molina, R., Mederos, A.: Cucurbituril as a new macrocyclic ligand for complexation of lanthanide cations in aqueous solutions. Eur. J. Inorg. Chem. 2002, 2380–2388 (2002).  https://doi.org/10.1002/1099-0682(200209)2002:9%3c2380:AID-EJIC2380%3e3.0.CO;2-2 CrossRefGoogle Scholar
  58. 58.
    Jansen, K., Buschmann, H.-J., Wego, A., Döpp, D., Mayer, C., Drexler, H.-J., Holdt, H.-J., Schollmeyer, E.: Cucurbit[5]uril, decamethylcucurbit[5]uril and cucurbit[6]uril. Synthesis, solubility and amine complex formation. J. Incl. Phenom. Macrocycl. Chem. 39, 357–363 (2001).  https://doi.org/10.1023/a:1011184725796 CrossRefGoogle Scholar
  59. 59.
    Liu, L., Zhao, N., Scherman, O.A.: Ionic liquids as novel guests for cucurbit[6]uril in neutral water. Chem. Commun. 9, 1070 (2008).  https://doi.org/10.1039/b716889f CrossRefGoogle Scholar
  60. 60.
    Zhao, N., Liu, L., Biedermann, F., Scherman, O.A.: Binding studies on CB[6] with a series of 1-Alkyl-3-methylimidazolium ionic liquids in an aqueous system. Chemistry 5, 530–537 (2010).  https://doi.org/10.1002/asia.200900510 CrossRefGoogle Scholar
  61. 61.
    Das, D., Assaf, K.I., Nau, W.M.: Applications of cucurbiturils in medicinal chemistry and chemical biology. Front. Chem. 7, 1–23 (2019).  https://doi.org/10.3389/fchem.2019.00619 CrossRefGoogle Scholar
  62. 62.
    Pattabiraman, M., Sivaguru, J., Ramamurthy, V.: Cucurbiturils as reaction containers for photocycloaddition of olefins. Isr. J. Chem. 58, 264–275 (2018).  https://doi.org/10.1002/ijch.201700100 CrossRefGoogle Scholar
  63. 63.
    Day, A.I., Blanch, R.J., Arnold, A.P., Lorenzo, S., Lewis, G.R., Dance, I.: A cucurbituril-based gyroscane: a new supramolecular form this research was supported by the Australian Research Council and the University of New South Wales. G.R.L. Acknowledges the award of a Royal Society Fellowship tenable in Australia. Angew. Chem Int. Ed. 41, 275 (2002).  https://doi.org/10.1002/1521-3773(20020118)41:2%3c275:aid-anie275%3e3.0.co;2-m CrossRefGoogle Scholar
  64. 64.
    Mecozzi, S., Rebek Jr., J.: The 55% solution: a formula for molecular recognition in the liquid state. Chemistry 4, 1016–1022 (1998).  https://doi.org/10.1002/(SICI)1521-3765(19980615)4:6%3c1016:AID-CHEM1016%3e3.0.CO;2-B CrossRefGoogle Scholar
  65. 65.
    Biedermann, F., Uzunova, V.D., Scherman, O.A., Nau, W.M., De Simone, A.: Release of high-energy water as an essential driving force for the high-affinity binding of cucurbit[n]urils. J. Am. Chem. Soc. 134, 15318–15323 (2012).  https://doi.org/10.1021/ja303309e CrossRefPubMedGoogle Scholar
  66. 66.
    De Simone, A., Nau, W.M., Vendruscolo, M., Scherman, O.A., Biedermann, F.: Cucurbit[8]uril and blue-box: high-energy water release overwhelms electrostatic interactions. J. Am. Chem. Soc. 135, 14879–14888 (2013).  https://doi.org/10.1021/ja407951x CrossRefPubMedGoogle Scholar
  67. 67.
    Biedermann, F., Nau, W.M., Schneider, H.-J.: The hydrophobic effect revisited-studies with supramolecular complexes imply high-energy water as a noncovalent driving force. Angew. Chem. Int. Ed. 53, 11158–11171 (2014).  https://doi.org/10.1002/anie.201310958 CrossRefGoogle Scholar
  68. 68.
    He, S., Biedermann, F., Vankova, N., Zhechkov, L., Heine, T., Hoffman, R.E., De Simone, A., Duignan, T.T., Nau, W.M.: Cavitation energies can outperform dispersion interactions. Nat. Chem. 10, 1252–1257 (2018).  https://doi.org/10.1038/s41557-018-0146-0 CrossRefPubMedGoogle Scholar
  69. 69.
    Mock, W.L., Irra, T.A., Wepsiec, J.P., Manimaran, T.L.: Cycloaddition induced by cucurbituril. A case of Pauling principle catalysis. J. Org. Chem. 48, 3619–3620 (1983).  https://doi.org/10.1021/jo00168a070 CrossRefGoogle Scholar
  70. 70.
    Jon, S.Y., Ko, Y.H., Park, S.H., Kim, H.-J., Kim, K.: A facile, stereoselective [2 + 2] photoreaction mediated by cucurbit[8]uril. Chem. Commun. (2001).  https://doi.org/10.1039/b105153a CrossRefGoogle Scholar
  71. 71.
    Pattabiraman, M., Natarajan, A., Kaanumalle, L.S., Ramamurthy, V.: Templating photodimerization of trans-cinnamic acids with cucurbit[8]uril and γ-cyclodextrin. Org. Lett. 7, 529–532 (2005).  https://doi.org/10.1021/ol047866k CrossRefPubMedGoogle Scholar
  72. 72.
    Barooah, N., Pemberton, B.C., Johnson, A.C., Sivaguru, J.: Photodimerization and complexation dynamics of coumarins in the presence of cucurbit[8]urils. Photochem. Photobiol. Sci. 7, 1473 (2008).  https://doi.org/10.1039/b814230k CrossRefPubMedGoogle Scholar
  73. 73.
    Pemberton, B.C., Barooah, N., Srivatsava, D.K., Sivaguru, J.: Supramolecular photocatalysis by confinement—photodimerization of coumarins within cucurbit[8]urils. Chem. Commun. 46, 225–227 (2010).  https://doi.org/10.1039/B920605A CrossRefGoogle Scholar
  74. 74.
    Pemberton, B.C., Singh, R.K., Johnson, A.C., Jockusch, S., Da Silva, J.P., Ugrinov, A., Turro, N.J., Srivastava, D.K., Sivaguru, J.: Supramolecular photocatalysis: insights into cucurbit[8]uril catalyzed photodimerization of 6-methylcoumarin. Chem. Commun. 47, 6323 (2011).  https://doi.org/10.1039/c1cc11164g CrossRefGoogle Scholar
  75. 75.
    Yang, C., Mori, T., Origane, Y., Ko, Y.H., Selvapalam, N., Kim, K., Inoue, Y.: Highly stereoselective photocyclodimerization of α-cyclodextrin-appended anthracene mediated by γ-cyclodextrin and cucurbit[8]uril: a dramatic steric effect operating outside the binding site. J. Am. Chem. Soc. 130, 8574–8575 (2008).  https://doi.org/10.1021/ja8032923 CrossRefPubMedGoogle Scholar
  76. 76.
    Biedermann, F., Ross, I., Scherman, O.A.: Host-guest accelerated photodimerisation of anthracene-labeled macromolecules in water. Polym. Chem. 5, 5375–5382 (2014).  https://doi.org/10.1039/c4py00627e CrossRefGoogle Scholar
  77. 77.
    Carvalho, C.P., Domínguez, Z., Da Silva, J.P., Pischel, U.: A supramolecular keypad lock. Chem. Commun. 51, 2698–2701 (2015).  https://doi.org/10.1039/C4CC09336D CrossRefGoogle Scholar
  78. 78.
    Pattabiraman, M., Kaanumalle, L.S., Natarajan, A., Ramamurthy, V.: Regioselective photodimerization of cinnamic acids in water: templation with cucurbiturils. Langmuir 22, 7605–7609 (2006).  https://doi.org/10.1021/la061215a CrossRefPubMedGoogle Scholar
  79. 79.
    Pattabiraman, M., Natarajan, A., Kaliappan, R., Mague, J.T., Ramamurthy, V.: Template directed photodimerization of trans-1,2-bis(n-pyridyl)ethylenes and stilbazoles in water. Chem. Commun. (2005).  https://doi.org/10.1039/b508458j CrossRefGoogle Scholar
  80. 80.
    Maddipatla, M.V.S.N., Kaanumalle, L.S., Natarajan, A., Pattabiraman, M., Ramamurthy, V.: Preorientation of olefins toward a single photodimer: cucurbituril-mediated photodimerization of protonated azastilbenes in water. Langmuir 23, 7545–7554 (2007).  https://doi.org/10.1021/la700803k CrossRefPubMedGoogle Scholar
  81. 81.
    Yang, H., Ma, Z., Wang, Z., Zhang, X.: Fabricating covalently attached hyperbranched polymers by combining photochemistry with supramolecular polymerization. Polym. Chem. 5, 1471–1476 (2014).  https://doi.org/10.1039/C3PY01237A CrossRefGoogle Scholar
  82. 82.
    Wang, R., Yuan, L., Macartney, D.H.: Cucurbit[7]uril mediates the stereoselective [4 + 4] photodimerization of 2-aminopyridine hydrochloride in aqueous solution. J. Org. Chem. 71, 1237–1239 (2006).  https://doi.org/10.1021/jo052136r CrossRefPubMedGoogle Scholar
  83. 83.
    Lei, L., Luo, L., Wu, X.-L., Liao, G.-H., Wu, L.-Z., Tung, C.-H.: Cucurbit[8]uril-mediated photodimerization of alkyl 2-naphthoate in aqueous solution. Tetrahedron Lett. 49, 1502–1505 (2008).  https://doi.org/10.1016/j.tetlet.2007.12.114 CrossRefGoogle Scholar
  84. 84.
    Wu, X.-L., Luo, L., Lei, L., Liao, G.-H., Wu, L.-Z., Tung, C.-H.: Highly efficient cucurbit[8]uril-templated intramolecular photocycloaddition of 2-naphthalene-labeled poly(ethylene glycol) in aqueous solution. J. Org. Chem. 73, 491–494 (2008).  https://doi.org/10.1021/jo701998e CrossRefPubMedGoogle Scholar
  85. 85.
    Barooah, N., Pemberton, B.C., Sivaguru, J.: Manipulating photochemical reactivity of coumarins within cucurbituril nanocavities. Org. Lett. 10, 3339–3342 (2008).  https://doi.org/10.1021/ol801256r CrossRefPubMedGoogle Scholar
  86. 86.
    Klöck, C., Dsouza, R.N., Nau, W.M.: Cucurbituril-mediated supramolecular acid catalysis. Org. Lett. 11, 2595–2598 (2009).  https://doi.org/10.1021/ol900920p CrossRefPubMedGoogle Scholar
  87. 87.
    Basilio, N., García-Río, L., Moreira, J.A., Pessêgo, M.: Supramolecular catalysis by Cucurbit[7]uril and cyclodextrins: similarity and differences. J. Org. Chem. 75, 848–855 (2010).  https://doi.org/10.1021/jo902398z CrossRefPubMedGoogle Scholar
  88. 88.
    Bruno, S.M., Gomes, A.C., Oliveira, T.S.M., Antunes, M.M., Lopes, A.D., Valente, A.A., Gonçalves, I.S., Pillinger, M.: Catalytic alcoholysis of epoxides using metal-free cucurbituril-based solids. Org. Biomol. Chem. 14, 3873–3877 (2016).  https://doi.org/10.1039/C6OB00512H CrossRefPubMedGoogle Scholar
  89. 89.
    Scorsin, L., Roehrs, J.A., Campedelli, R.R., Caramori, G.F., Ortolan, A.O., Parreira, R.L.T., Fiedler, H.D., Acuña, A., García-Río, L., Nome, F.: Cucurbituril-mediated catalytic hydrolysis: a kinetic and computational study with neutral and cationic dioxolanes in CB7. ACS Catal. 8, 12067–12079 (2018).  https://doi.org/10.1021/acscatal.8b03605 CrossRefGoogle Scholar
  90. 90.
    Jiao, Y., Tang, B., Zhang, Y., Xu, J.-F., Wang, Z., Zhang, X.: Highly efficient supramolecular catalysis by endowing the reaction intermediate with adaptive reactivity. Angew. Chem. Int. Ed. 57, 6077–6081 (2018).  https://doi.org/10.1002/anie.201713351 CrossRefGoogle Scholar
  91. 91.
    Wang, Y.-H., Cong, H., Zhao, F.-F., Xue, S.-F., Tao, Z., Zhu, Q.-J., Wei, G.: Selective catalysis for the oxidation of alcohols to aldehydes in the presence of cucurbit[8]uril. Catal. Commun. 12, 1127–1130 (2011).  https://doi.org/10.1016/j.catcom.2011.03.029 CrossRefGoogle Scholar
  92. 92.
    Hang, C., Fang-fang, Z., Jian-xin, Z., Xi, Z., Zhu, T., Sai-feng, X., Qian-jiang, Z.: Rapid transformation of benzylic alcohols to aldehyde in the presence of cucurbit[8]uril. Catal. Commun. 11, 167–170 (2009).  https://doi.org/10.1016/j.catcom.2009.09.018 CrossRefGoogle Scholar
  93. 93.
    Lima, S.M., Gómez, J.A., Barros, V.P., Vertuan, G.D.S., Assis, M.D., OliveiraGraeff, C.F., Demets, G.J.-F.: A new oxovanadium(IV)–cucurbit[6]uril complex: properties and potential for confined heterogeneous catalytic oxidation reactions. Polyhedron 29, 3008–3013 (2010).  https://doi.org/10.1016/j.poly.2010.08.001 CrossRefGoogle Scholar
  94. 94.
    Cong, H., Yamato, T., Tao, Z.: Hemicucurbit[6]uril-induced aerobic oxidation of heterocyclic compounds. J. Mol. Catal. A 379, 287–293 (2013).  https://doi.org/10.1016/j.molcata.2013.08.025 CrossRefGoogle Scholar
  95. 95.
    Cong, H., Yamato, T., Tao, Z.: Chemo-selective oxidation of hydroxybenzyl alcohols with IBX in the presence of hemicucurbit[6]uril. New J. Chem. 37, 3778 (2013).  https://doi.org/10.1039/c3nj00660c CrossRefGoogle Scholar
  96. 96.
    Cong, H., Chen, Q., Geng, Q., Tao, Z., Yamato, T.: IBX oxidation of benzenedimethanols in the presence of cucurbit[8]uril. Chin. J. Chem. 33, 545–549 (2015).  https://doi.org/10.1002/cjoc.201400886 CrossRefGoogle Scholar
  97. 97.
    Lu, X., Masson, E.: Silver-promoted desilylation catalyzed by ortho- and allosteric cucurbiturils. Org. Lett. 12, 2310–2313 (2010).  https://doi.org/10.1021/ol100667z CrossRefPubMedGoogle Scholar
  98. 98.
    Koner, A.L., Márquez, C., Dickman, M.H., Nau, W.M.: Transition-metal-promoted chemoselective photoreactions at the cucurbituril rim. Angew. Chem. Int. Ed. 50, 545–548 (2011).  https://doi.org/10.1002/anie.201005317 CrossRefGoogle Scholar
  99. 99.
    Lee, T.-C., Kalenius, E., Lazar, A.I., Assaf, K.I., Kuhnert, N., Grün, C.H., Jänis, J., Scherman, O.A., Nau, W.M.: Chemistry inside molecular containers in the gas phase. Nat. Chem. 5, 376–382 (2013).  https://doi.org/10.1038/nchem.1618 CrossRefPubMedGoogle Scholar
  100. 100.
    Smitka, J., Lemos, A., Porel, M., Jockusch, S., Belderrain, T.R., Tesařová, E., Da Silva, J.P.: Phototransformation of benzimidazole and thiabendazole inside cucurbit[8]uril. Photochem. Photobiol. Sci. 13, 310–315 (2014).  https://doi.org/10.1039/C3PP50336D CrossRefPubMedGoogle Scholar
  101. 101.
    Karami, K., Haghighat Naeini, N.: Palladium nanoparticles supported on cucurbit[6]uril: an efficient heterogeneous catalyst for the Suzuki reaction under mild conditions. Appl. Organomet. Chem. 29, 33–39 (2015).  https://doi.org/10.1002/aoc.3245 CrossRefGoogle Scholar
  102. 102.
    Li, T.-T., Wen, L.-L., Ji, H.-L., Liu, F.-Y., Sun, S.-G.: Bromination of N -phenyloxypropyl- N′-ethyl-4,4′-bipyridium in cucurbit[8]uril molecular reactor. Chin. Chem. Lett. 28, 463–466 (2017).  https://doi.org/10.1016/j.cclet.2016.10.004 CrossRefGoogle Scholar
  103. 103.
    Zheng, L., Sonzini, S., Ambarwati, M., Rosta, E., Scherman, O.A., Herrmann, A.: Turning cucurbit[8]uril into a supramolecular nanoreactor for asymmetric catalysis. Angew. Chem. Int. Ed. 54, 13007–13011 (2015).  https://doi.org/10.1002/anie.201505628 CrossRefGoogle Scholar
  104. 104.
    Palma, A., Artelsmair, M., Wu, G., Lu, X., Barrow, S.J., Uddin, N., Rosta, E., Masson, E., Scherman, O.A.: Cucurbit[7]uril as a supramolecular artificial enzyme for diels-alder reactions. Angew. Chem. Int. Ed. 56, 15688–15692 (2017).  https://doi.org/10.1002/anie.201706487 CrossRefGoogle Scholar
  105. 105.
    Saghanezhad, S.J., Nazari, Y., Davod, F.: Cucurbit[6]uril-OSO 3 H: a novel acidic nanocatalyst for the one-pot preparation of 14-aryl-14H-dibenzo[a, j]xanthenes and 1,8-dioxo-octahydro-xanthenes. RSC Adv. 6, 25525–25530 (2016).  https://doi.org/10.1039/C6RA02255C CrossRefGoogle Scholar
  106. 106.
    Gong, W., Ma, J., Zhao, Z., Gao, F., Liang, F., Zhang, H., Liu, S.: Inhibition and stabilization: cucurbituril induced distinct effects on the schiff base reaction. J. Org. Chem. 82, 3298–3301 (2017).  https://doi.org/10.1021/acs.joc.6b02971 CrossRefPubMedGoogle Scholar
  107. 107.
    Nandi, S., Patel, P., Jakhar, A., Khan, N.H., Biradar, A.V., Kureshy, R.I., Bajaj, H.C.: Cucurbit[6]uril-stabilized palladium nanoparticles as a highly active catalyst for chemoselective hydrogenation of various reducible groups in aqueous media. ChemistrySelect. 2, 9911–9919 (2017).  https://doi.org/10.1002/slct.201702196 CrossRefGoogle Scholar
  108. 108.
    Li, L., Zou, C., Zhou, L., Lin, L.: Cucurbituril-protected Cs2.5H0.5PW12O40 for optimized biodiesel production from waste cooking oil. Renew. Energy 107, 14–22 (2017).  https://doi.org/10.1016/j.renene.2017.01.053 CrossRefGoogle Scholar
  109. 109.
    Zhao, X., Liu, F., Zhao, Z., Karoui, H., Bardelang, D., Ouari, O., Liu, S.: Effects of cucurbit[n]uril (n = 7, 8, 10) hosts on the formation and stabilization of a naphthalenediimide (NDI) radical anion. Org. Biomol. Chem. 16, 3809–3815 (2018).  https://doi.org/10.1039/C8OB00664D CrossRefPubMedGoogle Scholar
  110. 110.
    Xu, H., Wang, Q.: Cucurbit[7]uril/CuCl promoting decomposition of 4-nitrobenzenediazonium in aqueous solution. Chin. Chem. Lett. 30, 337–339 (2019).  https://doi.org/10.1016/j.cclet.2018.03.014 CrossRefGoogle Scholar
  111. 111.
    Schulze, B., Schubert, U.S.: Beyond click chemistry—supramolecular interactions of 1,2,3-triazoles. Chem. Soc. Rev. 43, 2522 (2014).  https://doi.org/10.1039/c3cs60386e CrossRefPubMedGoogle Scholar
  112. 112.
    Moses, J.E., Moorhouse, A.D.: The growing applications of click chemistry. Chem. Soc. Rev. 36, 1249–1262 (2007).  https://doi.org/10.1039/B613014N CrossRefPubMedGoogle Scholar
  113. 113.
    Tuncel, D., Ünal, Ö., Artar, M.: Supramolecular assemblies constructed by cucurbituril-catalyzed click reaction. Isr. J. Chem. 51, 525–532 (2011).  https://doi.org/10.1002/ijch.201100034 CrossRefGoogle Scholar
  114. 114.
    Tuncel, D., Katterle, M.: pH-triggered dethreading-rethreading and switching of cucurbit[6]uril on bistable [3]pseudorotaxanes and [3]rotaxanes. Chemistry 14, 4110–4116 (2008).  https://doi.org/10.1002/chem.200702003 CrossRefPubMedGoogle Scholar
  115. 115.
    Tuncel, D., Özsar, Ö., Tiftik, H.B., Salih, B.: Molecular switch based on a cucurbit[6]uril containing bistable [3]rotaxane. Chem. Commun (2007).  https://doi.org/10.1039/b616764k CrossRefGoogle Scholar
  116. 116.
    Tuncel, D., Cindir, N., Koldemir, Ü.: [5]Rotaxane and [5]pseudorotaxane based on cucurbit[6]uril and anchored to a meso-tetraphenyl porphyrin. J. Incl. Phenom. Macrocycl. Chem. 55, 373–380 (2006).  https://doi.org/10.1007/s10847-006-9112-3 CrossRefGoogle Scholar
  117. 117.
    Tuncel, D., Steinke, J.H.G.: The synthesis of [2], [3] and [4]rotaxanes and semirotaxanes. Chem. Commun. (2002).  https://doi.org/10.1039/b109256c CrossRefGoogle Scholar
  118. 118.
    Celtek, G., Artar, M., Scherman, O.A., Tuncel, D.: Sequence-specific self-sorting of the binding sites of a ditopic guest by cucurbituril homologues and subsequent formation of a hetero[4]pseudorotaxane. Chemistry 15, 10360–10363 (2009).  https://doi.org/10.1002/chem.200901504 CrossRefPubMedGoogle Scholar
  119. 119.
    Nakamura, A., Inoue, Y.: Supramolecular catalysis of the enantiodifferentiating [4 + 4] photocyclodimerization of 2-anthracenecarboxylate by γ-cyclodextrin. J. Am. Chem. Soc. 125, 966–972 (2003).  https://doi.org/10.1021/ja016238k CrossRefPubMedGoogle Scholar
  120. 120.
    Yang, C., Fukuhara, G., Nakamura, A., Origane, Y., Fujita, K., Yuan, D.-Q., Mori, T., Wada, T., Inoue, Y.: Enantiodifferentiating [4 + 4] photocyclodimerization of 2-anthracenecarboxylate catalyzed by 6A,6X-diamino-6A,6X-dideoxy-γ-cyclodextrins: manipulation of product chirality by electrostatic interaction, temperature and solvent in supramolecular photochiroge. J. Photochem. Photobiol. A 173, 375–383 (2005).  https://doi.org/10.1016/j.jphotochem.2005.04.017 CrossRefGoogle Scholar
  121. 121.
    Nakamura, A., Inoue, Y.: Electrostatic manipulation of enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate within γ-cyclodextrin cavity through chemical modification. inverted product distribution and enhanced enantioselectivity. J. Am. Chem. Soc. 127, 5338–5339 (2005).  https://doi.org/10.1021/ja050704e CrossRefPubMedGoogle Scholar
  122. 122.
    Wang, Q., Yang, C., Fukuhara, G., Mori, T., Liu, Y., Inoue, Y.: Supramolecular FRET photocyclodimerization of anthracenecarboxylate with naphthalene-capped Y-cyclodextrin. Beilstein J. Org. Chem. 7, 290–297 (2011).  https://doi.org/10.3762/bjoc.7.38 CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Dsouza, R.N., Pischel, U., Nau, W.M.: Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution. Chem. Rev. 111, 7941–7980 (2011).  https://doi.org/10.1021/cr200213s CrossRefPubMedGoogle Scholar
  124. 124.
    Nau, W.M., Mohanty, J.: Taming fluorescent dyes with cucurbituril. Int. J. Photoenergy 7, 133–141 (2005).  https://doi.org/10.1155/S1110662X05000206 CrossRefGoogle Scholar
  125. 125.
    Parvari, G., Reany, O., Keinan, E.: Applicable properties of cucurbiturils. Isr. J. Chem. 51, 646–663 (2011).  https://doi.org/10.1002/ijch.201100048 CrossRefGoogle Scholar
  126. 126.
    Koner, A.L., Nau, W.M.: Cucurbituril encapsulation of fluorescent dyes. Supramol. Chem. 19, 55–66 (2007).  https://doi.org/10.1080/10610270600910749 CrossRefGoogle Scholar
  127. 127.
    Buschmann, H.J., Schollmeyer, E.: Cucurbituril and β-cyclodextrin as hosts for the complexation of organic dyes. J. Incl. Phenom. Mol. Recognit. Chem. 29, 167–174 (1997).  https://doi.org/10.1023/A:1007981816611 CrossRefGoogle Scholar
  128. 128.
    Miskolczy, Z., Megyesi, M., Tárkányi, G., Mizsei, R., Biczók, L.: Inclusion complex formation of sanguinarinealkaloid with cucurbit[7]uril: inhibition of nucleophilic attack and photooxidation. Org. Biomol. Chem. 9, 1061–1070 (2011).  https://doi.org/10.1039/C0OB00666A CrossRefPubMedGoogle Scholar
  129. 129.
    Wang, R., Yuan, L., Macartney, D.H.: Inhibition of C(2)-H/D exchange of a bis(imidazolium) dication upon complexation with cucubit[7]uril. Chem. Commun. (2006).  https://doi.org/10.1039/b605919h CrossRefGoogle Scholar
  130. 130.
    Berbeci, L.S., Wang, W., Kaifer, A.E.: Drastically decreased reactivity of thiols and disulfides complexed by cucurbit[6]uril. Org. Lett. 10, 3721–3724 (2008).  https://doi.org/10.1021/ol8013667 CrossRefPubMedGoogle Scholar
  131. 131.
    Cong, H., Li, C.-R., Xue, S.-F., Tao, Z., Zhu, Q.-J., Wei, G.: Cucurbituril-resisted acylation of the anti-tuberculosis drug isoniazidvia a supramolecular strategy. Org. Biomol. Chem. 9, 1041–1046 (2011).  https://doi.org/10.1039/C0OB00114G CrossRefPubMedGoogle Scholar
  132. 132.
    Minami, T., Esipenko, N.A., Zhang, B., Isaacs, L., Anzenbacher, P.: “Turn-on” fluorescent sensor array for basic amino acids in water. Chem. Commun. 50, 61–63 (2014).  https://doi.org/10.1039/C3CC47416J CrossRefGoogle Scholar
  133. 133.
    Minami, T., Esipenko, N.A., Zhang, B., Kozelkova, M.E., Isaacs, L., Nishiyabu, R., Kubo, Y., Anzenbacher, P.: Supramolecular sensor for cancer-associated nitrosamines. J. Am. Chem. Soc. 134, 20021–20024 (2012).  https://doi.org/10.1021/ja3102192 CrossRefPubMedGoogle Scholar
  134. 134.
    Lucas, D., Minami, T., Iannuzzi, G., Cao, L., Wittenberg, J.B., Anzenbacher, P., Isaacs, L.: Templated synthesis of glycoluril hexamer and monofunctionalized cucurbit[6]uril derivatives. J. Am. Chem. Soc. 133, 17966–17976 (2011).  https://doi.org/10.1021/ja208229d CrossRefPubMedGoogle Scholar
  135. 135.
    Peterson, K.M., Srivastava, D.K.: Energetic consequences of accommodating a bulkier ligand at the active site of medium chain Acyl-CoA dehydrogenase by creating a complementary enzyme site cavity †. Biochemistry 39, 12678–12687 (2000).  https://doi.org/10.1021/bi001317e CrossRefPubMedGoogle Scholar
  136. 136.
    Hammes, G.G.: Multiple conformational changes in enzyme catalysis †. Biochemistry 41, 8221–8228 (2002).  https://doi.org/10.1021/bi0260839 CrossRefPubMedGoogle Scholar
  137. 137.
    Nau, W.M., Florea, M., Assaf, K.I.: Deep inside cucurbiturils: physical properties and volumes of their inner cavity determine the hydrophobic driving force for host-guest complexation. Isr. J. Chem. 51, 559–577 (2011).  https://doi.org/10.1002/ijch.201100044 CrossRefGoogle Scholar
  138. 138.
    Chang, J., Ye, Q., Huang, K.-W., Zhang, J., Chen, Z.-K., Wu, J., Chi, C.: Stepwise cyanation of naphthalene diimide for n-channel field-effect transistors. Org. Lett. 14, 2964–2967 (2012).  https://doi.org/10.1021/ol300914k CrossRefPubMedGoogle Scholar
  139. 139.
    Guha, S., Goodson, F.S., Corson, L.J., Saha, S.: Boundaries of anion/naphthalenediimide interactions: from anion − π interactions to anion-induced charge-transfer and electron-transfer phenomena. J. Am. Chem. Soc. 134, 13679–13691 (2012).  https://doi.org/10.1021/ja303173n CrossRefPubMedGoogle Scholar
  140. 140.
    Guha, S., Goodson, F.S., Roy, S., Corson, L.J., Gravenmier, C.A., Saha, S.: Electronically regulated thermally and light-gated electron transfer from anions to naphthalenediimides. J. Am. Chem. Soc. 133, 15256–15259 (2011).  https://doi.org/10.1021/ja2055726 CrossRefPubMedGoogle Scholar
  141. 141.
    Kim, C., Agasti, S.S., Zhu, Z., Isaacs, L., Rotello, V.M.: Recognition-mediated activation of therapeutic gold nanoparticles inside living cells. Nat. Chem. 2, 962–966 (2010).  https://doi.org/10.1038/nchem.858 CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Koner, A.L., Ghosh, I., Saleh, N., Nau, W.M.: Supramolecular encapsulation of benzimidazole-derived drugs by cucurbit[7]uril. Can. J. Chem. 89, 139–147 (2011).  https://doi.org/10.1139/V10-079 CrossRefGoogle Scholar
  143. 143.
    Gromov, S.P., Vedernikov, A.I., Kuz’mina, L.G., Kondratuk, D.V., Sazonov, S.K., Strelenko, Y.A., Alfimov, M.V., Howard, J.A.K.: Photocontrolled molecular assembler based on cucurbit[8]uril: [2 + 2]-autophotocycloaddition of styryl dyes in the solid state and in water. Eur. J. Org. Chem. 2010, 2587–2599 (2010).  https://doi.org/10.1002/ejoc.200901324 CrossRefGoogle Scholar
  144. 144.
    Tuncel, D., Artar, M., Hanay, S.B.: The effect of cucurbit[n]uril on the solubility, morphology, and the photophysical properties of nonionic conjugated polymers in an aqueous medium. J. Polym. Sci. A 48, 4894–4899 (2010).  https://doi.org/10.1002/pola.24284 CrossRefGoogle Scholar
  145. 145.
    Huang, Y., Xue, S.-F., Tao, Z., Zhu, Q.-J., Zhang, H., Lin, J.-X., Yu, D.-H.: Solubility enhancement of kinetin through host–guest interactions with cucurbiturils. J. Incl. Phenom. Macrocycl. Chem. 61, 171–177 (2008).  https://doi.org/10.1007/s10847-008-9410-z CrossRefGoogle Scholar
  146. 146.
    Ghosh, I., Nau, W.M.: The strategic use of supramolecular pKa shifts to enhance the bioavailability of drugs. Adv. Drug Deliv. Rev. 64, 764–783 (2012).  https://doi.org/10.1016/j.addr.2012.01.015 CrossRefPubMedGoogle Scholar
  147. 147.
    Saleh, N., Koner, A.L., Nau, W.M.: Activation and stabilization of drugs by supramolecular pKa shifts: drug-delivery applications tailored for cucurbiturils. Angew. Chem. Int. Ed. 47, 5398–5401 (2008).  https://doi.org/10.1002/anie.200801054 CrossRefGoogle Scholar
  148. 148.
    Saleh, N., Al-Soud, Y.A., Al-Kaabi, L., Ghosh, I., Nau, W.M.: A coumarin-based fluorescent PET sensor utilizing supramolecular pK a shifts. Tetrahedron Lett. 52, 5249–5254 (2011).  https://doi.org/10.1016/j.tetlet.2011.07.138 CrossRefGoogle Scholar
  149. 149.
    Shaikh, M., Mohanty, J., Singh, P.K., Nau, W.M., Pal, H.: Complexation of acridine orange by cucurbit[7]uril and β-cyclodextrin: photophysical effects and pKa shifts. Photochem. Photobiol. Sci. 7, 408–414 (2008).  https://doi.org/10.1039/b715815g CrossRefPubMedGoogle Scholar
  150. 150.
    Praetorius, A., Bailey, D.M., Schwarzlose, T., Nau, W.M.: Design of a fluorescent dye for indicator displacement from cucurbiturils: a macrocycle-responsive fluorescent switch operating through a pKa shift. Org. Lett. 10, 4089–4092 (2008).  https://doi.org/10.1021/ol8016275 CrossRefPubMedGoogle Scholar
  151. 151.
    Mohanty, J., Bhasikuttan, A.C., Nail, W.M., Pal, H.: Host-guest complexation of neutral red with macrocyclic host molecules: contrasting pKa shifts and binding affinities for cucurbit[7]uril and β-cyclodextrin. J. Phys. Chem. B 110, 5132–5138 (2006).  https://doi.org/10.1021/jp056411p CrossRefPubMedGoogle Scholar
  152. 152.
    Lin, C.-K., Lu, T.-J.: A simple method for the oxidation of primary alcohols with o-iodoxybenzoic acid (IBX) in the presence of acetic acid. Tetrahedron 66, 9688–9693 (2010).  https://doi.org/10.1016/j.tet.2010.10.053 CrossRefGoogle Scholar
  153. 153.
    Bassil, B.S., Kortz, U., El-Sheshtawy, H.S., Nau, W.M., Assaf, K.I.: Halogen bonding inside a molecular container. J. Am. Chem. Soc. 134, 19935–19941 (2012).  https://doi.org/10.1021/ja3102902 CrossRefPubMedGoogle Scholar
  154. 154.
    Reddy, K.R.K.K., Cavallini, T.S., Demets, G.J.F., Silva, L.F.: Bromine and iodine–cucurbit[6]uril complexes: preparation and applications in synthetic organic chemistry. New J. Chem. 38, 2262 (2014).  https://doi.org/10.1039/c4nj00284a CrossRefGoogle Scholar
  155. 155.
    Zhao, Y., Liang, L.-L., Chen, K., Ji, N.-N., Cheng, X.-J., Xiao, X., Zhang, Y.-Q., Xue, S.-F., Zhu, Q.-J., Dong, N., Tao, Z.: [CdCl 4] 2 − anion-induced coordination of alkaline earth metal ions to cucurbit[7]uril, corresponding supramolecular self-assemblies and potential application. Dalt. Trans. 43, 929–932 (2014).  https://doi.org/10.1039/C3DT52213J CrossRefGoogle Scholar
  156. 156.
    Lei, W., Jiang, G., Zhou, Q., Hou, Y., Zhang, B., Cheng, X., Wang, X.: Self-assembly of anionic porphyrins and alkaline or alkaline earth metal ions mediated by cucurbit[7,8]uril. ChemPhysChem 14, 1003–1008 (2013).  https://doi.org/10.1002/cphc.201201025 CrossRefPubMedGoogle Scholar
  157. 157.
    Hu, J.-X., Hu, Y.-F., Xiao, X., Zhang, Y.-Q., Tao, Z., Xue, S.-F., Liu, J.-X., Zhu, Q.-J.: Coordination of pentacyclohexanocucurbit[5]uril with alkali metal ions and supramolecular self-assembly in the absence and presence of inorganic anions. Eur. J. Inorg. Chem. 2013, 3632–3640 (2013).  https://doi.org/10.1002/ejic.201300158 CrossRefGoogle Scholar
  158. 158.
    Gao, Z.-W., Feng, X., Mu, L., Ni, X.-L., Liang, L.-L., Xue, S.-F., Tao, Z., Zeng, X., Chapman, B.E., Kuchel, P.W., Lindoy, L.F., Wei, G.: Cucurbit[5]uril–metal complex-induced room-temperature phosphorescence of α-naphthol and β-naphthol. Dalt. Trans. 42, 2608–2615 (2013).  https://doi.org/10.1039/C2DT32002A CrossRefGoogle Scholar
  159. 159.
    Hu, Y.-F., Chen, K., Liu, J.-X., Lin, R.-L., Sun, W.-Q., Xue, S.-F., Zhu, Q.-J., Tao, Z.: Complexation of decamethylcucurbit[5]uril with alkali metal ions. Polyhedron 31, 632–637 (2012).  https://doi.org/10.1016/j.poly.2011.10.039 CrossRefGoogle Scholar
  160. 160.
    Chen, K., Feng, X., Liang, L.-L., Zhang, Y.-Q., Zhu, Q.-J., Xue, S.-F., Tao, Z.: Coordination and supramolecular self-assemblies of alkali and alkaline earth metal ions to cucurbit[5]uril in the presence of nitrophenol. Cryst. Growth Des. 11, 5712–5722 (2011).  https://doi.org/10.1021/cg201272e CrossRefGoogle Scholar
  161. 161.
    Zhang, X.X., Krakowiak, K.E., Xue, G., Bradshaw, J.S., Izatt, R.M.: A highly selective compound for lead: complexation studies of decamethylcucurbit[5]uril with metal ions. Ind. Eng. Chem. Res. 39, 3516–3520 (2000).  https://doi.org/10.1021/ie0001725 CrossRefGoogle Scholar
  162. 162.
    Hoffmann, R., Knoche, W., Fenn, C., Buschmann, H.-J.: Host–guest complexes of cucurbituril with the 4-methylbenzylammonium lon, alkali-metal cations and NH4+. J. Chem. Soc. Faraday Trans. 90, 1507–1511 (1994).  https://doi.org/10.1039/ft9949001507 CrossRefGoogle Scholar
  163. 163.
    Villarroel-Lecourt, G., Carrasco-Carvajal, J., Andrade-Villalobos, F., Solís-Egaña, F., Merino-San Martín, I., Robinson-Duggon, J., Fuentealba, D.: Encapsulation of chemotherapeutic drug melphalan in cucurbit[7]uril: effects on its alkylating activity, hydrolysis, and cytotoxicity. ACS Omega 3, 8337–8343 (2018).  https://doi.org/10.1021/acsomega.8b01335 CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Škalamera, Đ., Matković, M., Uzelac, L., Kralj, M., Mlinarić-Majerski, K., Bohne, C., Basarić, N.: Photodeamination to quinone methides in cucurbit[n]urils: potential application in drug delivery. Org. Biomol. Chem. 16, 8908–8912 (2018).  https://doi.org/10.1039/C8OB02605J CrossRefPubMedGoogle Scholar
  165. 165.
    Finbloom, J.A., Han, K., Slack, C.C., Furst, A.L., Francis, M.B.: Cucurbit[6]uril-promoted click chemistry for protein modification. J. Am. Chem. Soc. 139, 9691–9697 (2017).  https://doi.org/10.1021/jacs.7b05164 CrossRefPubMedGoogle Scholar
  166. 166.
    Kubota, R., Takabe, T., Arima, K., Taniguchi, H., Asayama, S., Kawakami, H.: New class of artificial enzyme composed of Mn-porphyrin, imidazole, and cucurbit[10]uril toward use as a therapeutic antioxidant. J. Mater. Chem. B 6, 7050–7059 (2018).  https://doi.org/10.1039/C8TB01204K CrossRefGoogle Scholar
  167. 167.
    Deraedt, C., Astruc, D.: Supramolecular nanoreactors for catalysis. Coord. Chem. Rev. 324, 106–122 (2016).  https://doi.org/10.1016/j.ccr.2016.07.007 CrossRefGoogle Scholar
  168. 168.
    Parente Carvalho, C., Norouzy, A., Ribeiro, V., Nau, W.M., Pischel, U.: Cucurbiturils as supramolecular inhibitors of DNA restriction by type II endonucleases. Org. Biomol. Chem. 13, 2866–2869 (2015).  https://doi.org/10.1039/C4OB02122C CrossRefPubMedGoogle Scholar
  169. 169.
    Masson, E., Shaker, Y.M., Masson, J.-P., Kordesch, M.E., Yuwono, C.: “Supramolecular circuitry”: three chemiluminescent, cucurbit[7]uril-controlled on/off switches. Org. Lett. 13, 3872–3875 (2011).  https://doi.org/10.1021/ol201403m CrossRefPubMedGoogle Scholar
  170. 170.
    Ghosh, S., Isaacs, L.: Biological catalysis regulated by cucurbit[7]uril molecular containers. J. Am. Chem. Soc. 132, 4445–4454 (2010).  https://doi.org/10.1021/ja910915k CrossRefPubMedGoogle Scholar
  171. 171.
    Hennig, A., Ghale, G., Nau, W.M.: Effects of cucurbit[7]uril on enzymatic activity. Chem. Commun. (2007).  https://doi.org/10.1039/b618703j CrossRefGoogle Scholar
  172. 172.
    Wu, Y., Xu, L., Shen, Y., Wang, Y., Zou, L., Wang, Q., Jiang, X., Liu, J., Tian, H.: The smallest cucurbituril analogue with high affinity for Ag+. Chem. Commun. 53, 4070–4072 (2017).  https://doi.org/10.1039/C7CC01729D CrossRefGoogle Scholar
  173. 173.
    Ganapati, S., Isaacs, L.: Acyclic cucurbit[n]urils capped with alkylene linkers: synthesis and molecular recognition properties. Supramol. Chem. 31, 114–126 (2019).  https://doi.org/10.1080/10610278.2018.1539228 CrossRefGoogle Scholar
  174. 174.
    Wang, X.-X., Chen, K., Shen, F.-F., Hua, Z.-Y., Qiu, S.-C., Zhang, Y.-Q., Cong, H., Liu, Q.-Y., Tao, Z., Xiao, X.: A new member of the inverted cucurbit[n]uril family. Chemistry 23, 16953–16956 (2017).  https://doi.org/10.1002/chem.201704069 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Chemistry and PharmacyFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations