23 Full factorial design for optimization of stable amorphous host–guest-based mirabegron complex for extended-release action

  • Pankaj Mandpe
  • Bala Prabhakar
  • Pravin ShendeEmail author
Original Article


The current study was to develop a stable amorphous mirabegron complex with improved solubility, stability, and extended-release of action. HPβCD was screened as a suitable complexing agent, which exhibited an entrapment efficiency of 91.2 ± 3.4% and facilitated transformation of drug into the amorphous state. The addition of ethylcellulose extended the release of the complex by 81.4 ± 2.8% for 12 h. The influence of HPβCD and ethyl cellulose on the crystal habit of mirabegron was analyzed by XRPD, DSC, ATR FTIR and morphological behavior were analyzed by SEM. 23 Full factorial design was used to optimize the mirabegron complex. The outcomes of stability studies illustrated amorphous complex was stable for 6 months at long-term and accelerated storage conditions, where content uniformity came under the accepted range of 98–102%. Thus, HPβCD-based inclusion complex represents a futuristic approach to design mirabegron formulation with improved solubility and extended-release of action in over active bladder syndrome.

Graphic abstract

Host-guest complex of HPβCD and mirabegron.


Ethylcellulose Overactive bladder Amorphous Factorial design 







Butylated hydroxytoluene


Polyvinyl pyrrolidone K-30


Ethyl cellulose


Design of experiments




Polyvinylidene fluoride


Scanning electron microscopy


High-performance liquid chromatography


Attenuated total reflectance Fourier transform infrared spectroscopy


Differential scanning calorimetry


Relative humidity



No funding has been received for writing the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no potential conflict of interest. No financial interest or benefit has arisen from the direct applications of research.


  1. 1.
    Surwase, S.A., Itkonen, L., Aaltonen, J., Saville, D., Rades, T., Peltonen, L., Strachan, C.J.: Polymer incorporation method affects the physical stability of amorphous indomethacin in aqueous suspension. Eur. J. Pharm. Biopharm. 96, 32–43 (2015). CrossRefPubMedGoogle Scholar
  2. 2.
    Martínez, L.M., Videa, M., Silva, T.L., Castro, S., Caballero, A., Lara-Díaz, V.J., Castorena-Torres, F.: Two-phase amorphous-amorphous solid drug dispersion with enhanced stability, solubility and bioavailability resulting from ultrasonic dispersion of an immiscible system. Eur. J. Pharm. Biopharm. 119, 243–252 (2017). CrossRefPubMedGoogle Scholar
  3. 3.
    Mesallati, H., Conroy, D., Hudson, S., Tajber, L.: Preparation and characterization of amorphous ciprofloxacin-amino acid salts. Eur. J. Pharm. Biopharm. 121, 73–89 (2017). CrossRefPubMedGoogle Scholar
  4. 4.
    Pokharkar, V.B., Mandpe, L.P., Padamwar, M.N., Ambike, A.A., Mahadik, K.R., Paradkar, A.: Development, characterization and stabilization of amorphous form of a low Tg drug. Powder Technol. 167(1), 20–25 (2006). CrossRefGoogle Scholar
  5. 5.
    Laitinen, R., Löbmann, K., Strachan, C.J., Grohganz, H., Rades, T.: Emerging trends in the stabilization of amorphous drugs. Int. J. Pharm. 453(1), 65–79 (2013). CrossRefPubMedGoogle Scholar
  6. 6.
    Yu, L.: Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv. Drug Deliv. Rev. 48(1), 27–42 (2001). CrossRefPubMedGoogle Scholar
  7. 7.
    Sherje, A.P., Surve, A., Shende, P.: CDI cross-linked β-cyclodextrin nanosponges of paliperidone: synthesis and physicochemical characterization. J. Mater. Sci. Mater. Med. 30(6), 74 (2019). CrossRefPubMedGoogle Scholar
  8. 8.
    Tyagi, P., Tyagi, V., Chancellor, M.: Mirabegron: a safety review. Expert Opin. Drug Saf. 10(2), 287–294 (2011). CrossRefPubMedGoogle Scholar
  9. 9.
    An, J.H., Lim, C., Kiyonga, A., Chung, I., Lee, I., Mo, K., Park, M., Youn, W., Choi, W., Suh, Y.G., Jung, K.: Co-amorphous screening for the solubility enhancement of poorly water-soluble mirabegron and investigation of their intermolecular interactions and dissolution behaviors. Pharmaceutics 10(3), 1–14 (2018). CrossRefGoogle Scholar
  10. 10.
    Shende, P.K., Gaud, R.S., Bakal, R., Patil, D.: Effect of inclusion complexation of meloxicam with β-cyclodextrin-and β-cyclodextrin-based nanosponges on solubility, in vitro release and stability studies. Colloids Surf. B 136, 105–110 (2015). CrossRefGoogle Scholar
  11. 11.
    Ramazani, A., Rezaei, M.: RP-HPLC method development and validation for the quantitative estimation of mirabegron in extended-release tablets. J. Med. Chem. Sci. 1(2), 36–40 (2018). CrossRefGoogle Scholar
  12. 12.
    Guideline, I.H.T.: Stability testing of new drug substances and products. Q1A (R2), current step, 4, 1–24 (2003)Google Scholar
  13. 13.
    Malanga, M., Szemán, J., Fenyvesi, É., Puskás, I., Csabai, K., Gyémánt, G., Fenyvesi, F., Szente, L.: ‘Back to the future’: a new look at hydroxypropyl beta-cyclodextrins. J. Pharm. Sci. 105(9), 2921–2931 (2016). CrossRefPubMedGoogle Scholar
  14. 14.
    Srihakulung, O., Maezono, R., Toochinda, P., Kongprawechnon, W., Intarapanich, A.: Host–guest interactions of plumbagin with β-cyclodextrin, dimethyl-β-cyclodextrin and hydroxypropyl-β-cyclodextrin: semi-empirical quantum mechanical PM6 and PM7 methods. Sci. Pharm. 86(2), 20 (2018). CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Shende, P.K., Trotta, F., Gaud, R.S., Deshmukh, K., Cavalli, R., Biasizzo, M.: Influence of different techniques on formulation and comparative characterization of inclusion complexes of ASA with β-cyclodextrin and inclusion complexes of ASA with PMDA cross-linked β-cyclodextrin nanosponges. J. Incl. Phenom. Macrocycl. Chem. 74(1–4), 447–454 (2012). CrossRefGoogle Scholar
  16. 16.
    Mukne, A.P., Nagarsenker, M.S.: Triamterene-β-cyclodextrin systems: preparation, characterization and in vivo evaluation. AAPS PharmSciTech 5(1), 142 (2004). CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Mura, P., Adragna, E., Rabasco, A.M., Moyano, J.R., Perez-Martinez, J.I., Arias, M.J., Gines, J.M.: Effects of the host cavity size and the preparation method on the physicochemical properties of ibuproxam-cyclodextrin systems. Drug Dev. Ind. Pharm. 25(3), 279–287 (2019). CrossRefGoogle Scholar
  18. 18.
    Liu, J., Qiu, L., Gao, J., Jin, Y.: Preparation, characterization and in vivo evaluation of formulation of baicalein with hydroxypropyl-β-cyclodextrin. Int. J. Pharm. 312(1–2), 137–143 (2006). CrossRefPubMedGoogle Scholar
  19. 19.
    Eid, E.E., Abdul, A.B., Suliman, F.E.O., Sukari, M.A., Rasedee, A., Fatah, S.S.: Characterization of the inclusion complex of zerumbone with hydroxypropyl-β-cyclodextrin. Carbo. Polym. 83(4), 1707–1714 (2011). CrossRefGoogle Scholar
  20. 20.
    Fini, A., Ospitali, F., Zoppetti, G., Puppini, N.: ATR/Raman and fractal characterization of HPBCD/progesterone complex solid particles. Pharm. Res. 25(9), 2030–2040 (2008). CrossRefPubMedGoogle Scholar
  21. 21.
    Williams III, R.O., Mahaguna, V., Sriwongjanya, M.: Characterization of an inclusion complex of cholesterol and hydroxypropyl-β-cyclodextrin. Eur. J. Pharm. Biopharm. 46(3), 355–360 (1998). CrossRefPubMedGoogle Scholar
  22. 22.
    Yehye, W.A., Rahman, N.A., Ariffin, A., Hamid, S.B.A., Alhadi, A.A., Kadir, F.A., Yaeghoobi, M.: Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): a review. Eur. J. Med. Chem. 101, 295–312 (2015). CrossRefPubMedGoogle Scholar
  23. 23.
    Katikaneni, P.R., Upadrashta, S.M., Neau, S.H., Mitra, A.K.: Ethylcellulose matrix controlled release tablets of a water-soluble drug. Int. J. Pharm. 123(1), 119–125 (1995). CrossRefGoogle Scholar
  24. 24.
    Desai, J., Alexander, K., Riga, A.: Characterization of polymeric dispersions of dimenhydrinate in ethyl cellulose for controlled release. Int. J. Pharm. 308(1–2), 115–123 (2006). CrossRefPubMedGoogle Scholar
  25. 25.
    Jaria, G., Silva, C.P., Oliveira, J.A., Santos, S.M., Gil, M.V., Otero, M., Calisto, V., Esteves, V.I.: Production of highly efficient activated carbons from industrial wastes for the removal of pharmaceuticals from water-A full factorial design. J. Hazard. Mater. 370, 212–218 (2019). CrossRefPubMedGoogle Scholar
  26. 26.
    Bhavsar, M.D., Tiwari, S.B., Amiji, M.M.: Formulation optimization for the nanoparticles-in-microsphere hybrid oral delivery system using factorial design. J. Control. Release 110(2), 422–430 (2006). CrossRefPubMedGoogle Scholar
  27. 27.
    Burrows, N.D., Harvey, S., Idesis, F.A., Murphy, C.J.: Understanding the seed-mediated growth of gold nanorods through a fractional factorial design of experiments. Langmuir 33(8), 1891–1907 (2016)CrossRefGoogle Scholar
  28. 28.
    Goldsmith, S., McDowell, A.: Designing a formulation of the nootropic drug aniracetam using 2-hydroxypropyl-β-cyclodextrin suitable for parenteral administration. Pharmaceutics 10(4), 240 (2018). CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Shobhaben Pratapbhai Patel School of Pharmacy and Technology ManagementSVKM’S NMIMSMumbaiIndia

Personalised recommendations