Advertisement

X-ray crystal structures of α-cyclodextrin–5-hydroxypentanoic acid, β-cyclodextrin–5-hydroxypentanoic acid, β-cyclodextrin–ε-caprolactone, and β-cyclodextrin–ε-caprolactam inclusion complexes

  • Motofumi Osaki
  • Yoshinori TakashimaEmail author
  • Shigehiro Kamitori
  • Hiroyasu Yamaguchi
  • Akira HaradaEmail author
Original Article
  • 75 Downloads

Abstract

Inclusion complexes of α-cyclodextrin–5-hydroxypentanoic acid (αCD-5HPA) and β-cyclodextrin–5-hydroxypentanoic acid (βCD-5HPA) were respectively prepared from aqueous solutions of cyclodextrins (CDs) and δ-valerolactone (δVL). The solutions were allowed to stand at room temperature for 1 week to give single crystals preferable for X-ray crystallography. δVL was found to be hydrolyzed in the presence of αCD or βCD to give the inclusion complexes of CDs and the hydrolysate. On the contrary, inclusion complexes of βCD–ε-caprolactone (βCD–εCL) and βCD–ε-caprolactam (βCD–εCLm) were respectively obtained from the aqueous solution of βCD and εCL/εCLm without hydrolysis. Packing structure of the complexes showed that αCD-5HPA forms a layer-type structure of the αCD host molecules, and that βCD-5HPA, βCD–εCL and βCD–εCLm form cage-type structures of the βCDs molecules. In these crystal structures, the guest molecules are included in the CD cavity through the hydrogen bonds or hydrophobic interactions.

Keywords

Cyclodextrin Lactone Lactam Crystal Structure Hydrolysis 

Abbreviations

CD

Cyclodextrin

αCD

α-Cyclodextrin

βCD

β-Cyclodextrin

γCD

γ-Cyclodextrin

γBL

γ-Butyrolactone

δVL

δ-Valerolactone

5HPA

5-Hydroxypentanoic acid

εCL

ε-Caprolactone

εCLm

ε-Caprolactam

αCD-5HPA

α-Cyclodextrin–5-hydroxypentanoic acid inclusion complex

βCD-5HPA

β-Cyclodextrin–5-hydroxypentanoic acid inclusion complex

βCD–εCL

β-Cyclodextrin–ε-caprolactone inclusion complex

βCD–εCLm

β-Cyclodextrin–ε-caprolactam inclusion complex

Notes

Supplementary material

10847_2019_953_MOESM1_ESM.cif (46 kb)
Electronic supplementary material 1 (CIF 46 kb)
10847_2019_953_MOESM2_ESM.cif (47 kb)
Electronic supplementary material 2 (CIF 47 kb)
10847_2019_953_MOESM3_ESM.CIF
Electronic supplementary material 3 (CIF 23 kb)
10847_2019_953_MOESM4_ESM.cif (35 kb)
Electronic supplementary material 4 (CIF 35 kb)

References

  1. 1.
    Szejtli, J.: Cyclodextrin Technology. Kluwer Academic, Dordrecht (1988)CrossRefGoogle Scholar
  2. 2.
    Duchene, D., Wouessidjewe, D.: Cyclodextrins and their Industrial Uses. Editions de Santé, Paris (1987)Google Scholar
  3. 3.
    Saenger, W.: Angew. Chem. Int. Ed. 19, 344–362 (1980)CrossRefGoogle Scholar
  4. 4.
    Atwood, J.L., Davies, J.E.D., MacNicol, D.D., Vögtle, F.: Comprehensive Supramolecular Chemistry. Cyclodextrins, vol. 3. Pergamon, Oxford (1996)Google Scholar
  5. 5.
    Cyclodextrins Special Issue. Chem. Rev. 5, 1741–2076 (1998)Google Scholar
  6. 6.
    Czarniecki, M.F., Breslow, R.: J. Am. Chem. Soc. 100, 7771–7772 (1978)CrossRefGoogle Scholar
  7. 7.
    Breslow, R., Czarniecki, M.F., Emert, J., Hamaguchi, H.: J. Am. Chem. Soc. 102, 762–770 (1980)CrossRefGoogle Scholar
  8. 8.
    Breslow, R., Trainor, G.L., Ueno, A.: J. Am. Chem. Soc. 105, 2739–2744 (1983)CrossRefGoogle Scholar
  9. 9.
    Breslow, R.: Acc. Chem. Res. 24, 317–324 (1991)CrossRefGoogle Scholar
  10. 10.
    Zhang, B., Breslow, R.: J. Am. Chem. Soc. 119, 1676–1681 (1997)CrossRefGoogle Scholar
  11. 11.
    Breslow, R., Zhang, X., Huang, Y.: J. Am. Chem. Soc. 119, 4535–4536 (1997)CrossRefGoogle Scholar
  12. 12.
    Bender, M.L., Komiyama, M.: Cyclodextrin Chemistry. Springer, Berlin (1978)CrossRefGoogle Scholar
  13. 13.
    Bender, M.L., Bergeron, R.J., Komiyama, M.: The Bioorganic Chemistry of Enzymatic Catalysis. Wiley, New York (1984)Google Scholar
  14. 14.
    D’Souza, V., Bender, M.L.: Acc. Chem. Res. 20, 146–152 (1987)CrossRefGoogle Scholar
  15. 15.
    VanEtten, R.L., Sebastian, J.F., Clowes, G.A., Bender, M.L.: J. Am. Chem. Soc. 89, 3242–3253 (1967)CrossRefGoogle Scholar
  16. 16.
    VanEtten, R.L., Sebastian, J.F., Clowes, G.A., Bender, M.L.: J. Am. Chem. Soc. 89, 3253–3262 (1967)CrossRefGoogle Scholar
  17. 17.
    Takashima, Y., Kawaguchi, Y., Nakagawa, S., Harada, A.: Chem. Lett. 12, 1122–1123 (2003)CrossRefGoogle Scholar
  18. 18.
    Takashima, Y., Osaki, M., Harada, A.: J. Am. Chem. Soc. 126, 13588–13589 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wang, E., Chen, G., Han, C.: Chin. J. Chem. 29, 617–622 (2011)CrossRefGoogle Scholar
  20. 20.
    Harata, K.: Chem. Rev. 98, 1803–1827 (1998)CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Harata, K.: Comprehensive Supramolecular Chemistry, vol. 3. Cyclodextrins. Pergamon, Oxford (1996). (Chapter 9) Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Macromolecular Science, Graduate School of ScienceOsaka UniversityToyonakaJapan
  2. 2.Institute for Advanced Co-Creation Studies, Osaka UniversityToyonakaJapan
  3. 3.The Institute of Scientific and Industrial Research, Osaka UniversityIbarakiJapan
  4. 4.Division of Structural BiologyLife Science Research Center, Kagawa UniversityMikiJapan

Personalised recommendations