Advertisement

Theoretical investigation of metalated and unmetalated pyrphyrins immobilized on Ag(111) surface

  • Yeliz GurdalEmail author
Original Article
  • 76 Downloads

Abstract

Investigations of interactions between macrocyclic molecules and metal surfaces are crucial for emerging technologies, such as chemical and biological sensors, molecular electronics, read/write/erase memory, and magnetism. Thus, understanding the organic molecule and metal interface gains considerable importance. In this respect, we investigate a relatively unexplored porphyrin-related macrocycle, named as Pyrphyrin (Pyr), on Ag(111) surface by means of density functional theory. Our results show that main contribution to the adsorption energy is the dispersive contribution arising due to the interactions between the molecules and the surface. Optimal coordination of two cyano Ns and Co atoms (for CoPyr) to the surface Ag atoms determine preferred adsorption sites. Cyano ends of the Pyr molecule act as anchoring groups and enhances the stability of the complex by bending towards the Ag(111) surface. Cobalt incorporation into the Pyr core, on the other hand, further increases the adsorption strength by contribution of the attractive interactions between Co and Ag atoms. Selected molecular orbital representations of the complexes reveal the extension of orbitals located on Co and/or on two cyano N towards surface Ag atoms, thus, hybridization between molecular and surface states upon adsorption are confirmed.

Keywords

Density functional theory Ag(111) Cobalt–pyrphyrin Adsorption Hybridization 

Notes

Acknowledgements

We acknowledge PRACE for awarding us access to the supercomputer resources Marconi based in Italy at the Cineca. We also gratefully acknowledge computing resources from the Swiss National Supercomputer Centre (CSCS). We appreciate reviewers for their careful reading and valuable comments.

References

  1. 1.
    Lykova, M., Panchenko, I., Künzelmann, U., Reif, J., Geidel, M., Wolf, M.J., Lang, K.-D.: Characterisation of Cu/Cu bonding using self-assembled monolayer. Solder. Surf. Mt. Technol. 30, 106–111 (2018)Google Scholar
  2. 2.
    Jayaraman, M., Pathak, S.S., Yegnaraman, V.: Review on corrosion prevention of copper using ultrathin organic monolayers. Corros. Rev. 24, 307–322 (2006)Google Scholar
  3. 3.
    Berger, R., Delamarche, E., Lang, H.P., Gerber, C., Gimzewski, J.K., Meyer, E., Güntherodt, H.-J.: Surface stress in the self-assembly of alkanethiols on gold. Science 276, 2021–2024 (1997)Google Scholar
  4. 4.
    Cooper, M.A.: Optical biosensors in drug discovery. Nat. Rev. Drug Discov. 1, 515–528 (2002)PubMedGoogle Scholar
  5. 5.
    Benjamin, T.H., Joon, H.H., Stephen, J.K., Milan, M.: Peptide chips for the quantitative evaluation of protein kinase activity. Nat. Biotechnol. 20, 270–274 (2002)Google Scholar
  6. 6.
    Sortino, S., Petralia, S., Condorelli, G.G., Conoci, S., Condorelli, G.: Novel photoactive self-assembled monolayer for immobilization and cleavage of DNA. Langmuir 19, 536–539 (2003)Google Scholar
  7. 7.
    Shin, H.S., Yang, H.J., Jung, Y.M., Kim, S.B.: Direct patterning of silver colloids by microcontact printing: possibility as SERS substrate array. Vib. Spectrosc. 29, 79–82 (2002)Google Scholar
  8. 8.
    Flood, A.H., Stoddart, J.F., Steuerman, D.W., Heath, J.R.: Whence molecular electronics? Science 306, 2055–2056 (2004)PubMedGoogle Scholar
  9. 9.
    Gates, B.D., Xu, Q., Stewart, M., Ryan, D., Willson, C.G., Whitesides, G.M.: New approaches to nanofabrication: molding, printing, and other techniques. Chem. Rev. 105, 1171–1196 (2005)PubMedGoogle Scholar
  10. 10.
    Hefa, C., Yuanan, H.: Influence of chain ordering on frictional properties of self-assembled monolayers (SAMs) in nano-lubrication. Adv. Colloid Interface Sci. 171–172, 53–65 (2012)Google Scholar
  11. 11.
    Amdursky, N., Shalev, G., Handelman, A., Litsyn, S., Natan, A., Roizin, Y., Rosenwaks, Y., Szwarcman, D., Rosenman, G.: Bioorganic nanodots for non-volatile memory devices. APL Mater. 1, 62104–62113 (2013)Google Scholar
  12. 12.
    Greene, J.E.: Tracing the 4000 year history of organic thin films: from monolayers on liquids to multilayers on solids. Appl. Phys. Rev. 2, 11101 (2015)Google Scholar
  13. 13.
    Bao, M., Wei, X., Cai, L., Sun, Q., Liu, Z., Xu, W.: Self-assembly of melem on Au(111) and Ag(111): the origin of two different hydrogen bonding configurations. Phys. Chem. Chem. Phys. 19, 18704–18708 (2017)PubMedGoogle Scholar
  14. 14.
    Xu, W., Wang, J.-G., Yu, M., Lægsgaard, E., Stensgaard, I., Linderoth, T.R., Hammer, B., Wang, C., Besenbacher, F.: Guanine- and potassium-based two-dimensional coordination network self-assembled on Au(111). J. Am. Chem. Soc. 132, 15927–15929 (2010)PubMedGoogle Scholar
  15. 15.
    Rangger, G.M., Romaner, L., Heimel, G., Zojer, E.: Understanding the properties of interfaces between organic self-assembled monolayers and noble metals -a theoretical perspective. Surf. Interface Anal. 40, 371–378 (2008)Google Scholar
  16. 16.
    Malone, W., von der Heyde, J., Kara, A.: Competing adsorption mechanisms of pyridine on Cu, Ag, Au, and Pt(110) surfaces. J. Chem. Phys. 149, 214703–214715 (2018)PubMedGoogle Scholar
  17. 17.
    Cruz, F.D., Driaf, K., Berthier, C., Lameille, J.-M., Armand, F.: Study of a self-assembled porphyrin monomolecular layer obtained by metal complexation. Thin Solid Films 349, 155–161 (1999)Google Scholar
  18. 18.
    Jurow, M., Schuckman, A.E., Batteas, J.D., Draina, C.M.: Highly ordered 2D hydrogen-bonded structures of a tetralactam macrocycle on the Au(111) surface. Coord. Chem. Rev. 254, 2297–2310 (2007)Google Scholar
  19. 19.
    Kossev, I., Reckien, W., Kirchner, B., Felder, T., Nieger, M., Schalley, C., Vögtle, F., Sokolowski, M.: Highly ordered 2D hydrogen-bonded structures of a tetralactam macrocycle on the Au(111) surface. Adv. Funct. Mater. 17, 513–519 (2007)Google Scholar
  20. 20.
    Cui, K., Schlütter, F., Ivasenko, O., Kivala, M., Schwab, M.G., Lee, S.-L., Mertens, S.F.L., Tahara, K., Tobe, Y., Müllen, K., Mali, K.S., DeFeyter, S.: Multicomponent self-assembly with a shape-persistent N-heterotriangulene macrocycle on Au(111). Chem. Eur. J. 21, 1652–1659 (2015)PubMedGoogle Scholar
  21. 21.
    Studener, F., Müller, K., Marets, N., Bulach, V., Hosseini, M.W., Stöhr, M.: From hydrogen bonding to metal coordination and back: porphyrin-based networks on Ag(111). J. Chem. Phys. 142, 101926–101931 (2015)PubMedGoogle Scholar
  22. 22.
    Murphy, B.E., Krasnikov, S.A., Sergeeva, N.N., Cafolla, A.A., Preobrajenski, A.B., Chaika, A.N., Lübben, O., Shvets, I.V.: Homolytic cleavage of molecular oxygen by manganese porphyrins supported on Ag(111). ACS Nano 8, 5190–5198 (2014)PubMedGoogle Scholar
  23. 23.
    Yang, B., Cao, N., Ju, H., Lin, H., Li, Y., Ding, H., Ding, J., Zhang, J., Peng, C., Zhang, H., Zhu, J., Li, Q., Chi, L.: Intermediate states directed chiral transfer on a silver surface. J. Am. Chem. Soc. 141, 168–174 (2019)PubMedGoogle Scholar
  24. 24.
    Sandhyarani, N., Pradeep, T.: Current understanding of the structure, phase transitions and dynamics of self-assembled monolayers on two- and three-dimensional surfaces. Int. Rev. Phys. Chem. 22, 221–262 (2003)Google Scholar
  25. 25.
    Templeton, A., Wuelfing, M., Murray, R.: Monolayer protected cluster molecules. Acc. Chem. Res. 33, 27–36 (2000)PubMedGoogle Scholar
  26. 26.
    Scheil, K., Lorente, N., Bocquet, M.-L., Hess, P.C., Mayor, M., Berndt, R.: Adatom coadsorption with three-dimensional cyclophanes on Ag(111). J. Phys. Chem. C 121, 25303–25308 (2017)Google Scholar
  27. 27.
    Baby, A., Lin, H., Ravikumar, A., Bittencourt, C., Wegner, H.A., Floreano, L., Goldoni, A., Fratesi, G.: Lattice mismatch drives spatial modulation of corannulene tilt on Ag(111). J. Phys. Chem. C 122, 10365–10376 (2018)Google Scholar
  28. 28.
    Lepper, M., Schmitt, T., Gurrath, M., Raschmann, M., Zhang, L., Stark, M., Hölzel, H., Jux, N., Meyer, B., Schneider, M.A., Steinrück, H.-P., Marbach, H.: Adsorption behavior of a cyano-functionalized porphyrin on Cu(111) and Ag(111): from molecular wires to ordered supramolecular two-dimensional aggregates. J. Phys. Chem. C 121, 26361–26371 (2017)Google Scholar
  29. 29.
    Ogawa, S., Narushima, R., Arai, Y.: Aza macrocycle that selectively binds lithium ion with color change. J. Am. Chem. Soc. 106, 5760–5762 (1984)Google Scholar
  30. 30.
    Ogawa, S., Uchida, T., Uchiya, T., Hirano, T., Saburi, M., Uchidac, Y.: Lithium complexation of configurational isomers of tetra-aza macrocycle containing 2,2[prime or minute]-bipyridine. X-Ray molecular structure of the trans-isomer of a dibutyl dicyano macrocycle. J. Chem. Soc. 1, 1649–1653 (1990)Google Scholar
  31. 31.
    Pierre, C., Vincent, J.-M., Verlhac, J.-B., Courseille, C., Dautant, A., Mathoniere, C.: First synthesis and crystal structure of a Mn3+ complex derived from the Ogawa porphyrin-like ligand. New J. Chem. 25, 522–524 (2001)Google Scholar
  32. 32.
    Zhu, Z., Takano, K., Furuhama, A., Ogawa, S., Tsuchiya, S.: Theoretical study of geometries and electronic transition of color-switching molecules: tetra-aza macrocycle and its zinc complexes. Bull. Chem. Soc. Jpn. 80, 686–693 (2007)Google Scholar
  33. 33.
    Ibrahim, R., Tsuchiya, S., Ogawa, S.: A color-switching molecule: specific properties of new tetraaza macrocycle zinc complex with a facile hydrogen atom. J. Am. Chem. Soc. 122, 12174–12185 (2000)Google Scholar
  34. 34.
    Joliat, E., Schnidrig, S., Probst, B., Bachmann, C., Spingler, B., Baldridge, K.K., von Rohr, F., Schilling, A., Alberto, R.: Cobalt complexes of tetradentate, bipyridine-based macrocycles: their structures, properties and photocatalytic proton reduction. Dalton Trans. 45, 1737–1745 (2016)PubMedGoogle Scholar
  35. 35.
    Joliat-Wick, E., Weder, N., Klose, D., Bachmann, C., Spingler, B., Probst, B., Alberto, R.: Light-induced H\(_2\) evolution with a macrocyclic cobalt diketo-pyrphyrin as a proton-reducing catalyst. Inorg. Chem. 57, 1651–1655 (2018)PubMedGoogle Scholar
  36. 36.
    Gurdal, Y., Luber, S., Hutter, J., Iannuzzi, M.: Non-innocent adsorption of Co-pyrphyrin on rutile(110). Phys. Chem. Chem. Phys. 17, 22846–22854 (2015)PubMedGoogle Scholar
  37. 37.
    Graf, M., Mette, G., Leuenberger, D., Gurdal, Y., Iannuzzi, M., Zabka, W.-D., Schnidrig, S., Probst, B., Hutter, J., Alberto, R., Osterwalder, J.: The impact of metalation on adsorption geometry, electronic level alignment and UV-stability of organic macrocycles on TiO2(110). Nanoscale 9, 8756–8763 (2017)PubMedGoogle Scholar
  38. 38.
    Leuenberger, D., Zabka, W.-D., Shah, O.-F.R., Schnidri, S., Probst, B., Alberto, R., Osterwalder, J.: Atomically resolved band bending effects in a p-n heterojunction of Cu\(_2\)O and a cobalt macrocycle. Nano Lett. 17, 6620–6625 (2017)PubMedGoogle Scholar
  39. 39.
    Li, J., Wäckerlin, C., Schnidrig, S., Joliat, E., Alberto, R., Ernst, K.-H.: On-surface metalation and 2D self-assembly of pyrphyrin molecules into metal-coordinated networks on Cu(111). Helvetica Chimica Acta 100, 1600278–1600285 (2016)Google Scholar
  40. 40.
    Rieger, A., Schnidrig, S., Probst, B., Ernst, K.-H., Wäckerlin, C.: Ranking the stability of transition-metal complexes by on-surface atom exchange. J. Phys. Chem. Lett. 8, 6193–6198 (2017)PubMedGoogle Scholar
  41. 41.
    Mette, G., Sutter, D., Gurdal, Y., Schnidrig, S., Probst, B., Iannuzzi, M., Hutter, J., Alberto, R., Osterwalder, J.: From porphyrins to pyrphyrins: adsorption study and metalation of a molecular catalyst on Au(111). Nanoscale 8, 7958–7968 (2016)PubMedGoogle Scholar
  42. 42.
    Gurdal, Y., Hutter, J., Iannuzzi, M.: Insight into (Co)pyrphyrin adsorption on Au(111): effects of herringbone reconstruction and dynamics of metalation. J. Phys. Chem. C 121, 11416–11427 (2017)Google Scholar
  43. 43.
    Rieger, A., Schnidrig, S., Probst, B., Ernst, K.-H., Wäckerlin, C.: Ranking the stability of transition-metal complexes by on-surface atom exchange. J. Phys. Chem. C 121, 27521–27527 (2017)Google Scholar
  44. 44.
    Hutter, J., Iannuzzi, M., Schiffmann, F., VandeVondele, J.: cp2k: atomistic simulations of condensed matter systems. Wiley Interdiscip. Rev. 4, 15–25 (2014)Google Scholar
  45. 45.
    Goedecker, S., Teter, M., Hutter, J.: Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996)Google Scholar
  46. 46.
    VandeVondele, J., Hutter, J.: Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105–114113 (2007)PubMedGoogle Scholar
  47. 47.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)Google Scholar
  48. 48.
    Vydrov, O.A., Van Voorhis, T.: Nonlocal van der Waals density functional made simple. Phys. Rev. Lett. 103, 63004–63007 (2009)Google Scholar
  49. 49.
    Sabatini, R., Gorni, T., de Gironcoli, S.: Nonlocal van der Waals density functional made simple and efficient. Phys. Rev. B 87, 41108–41111 (2013)Google Scholar
  50. 50.
    Reckien, W., Eggers, M., Bredow, T.: Theoretical study of the adsorption of benzene on coinage metals. Beilstein J. Org. Chem. 10, 1775–1784 (2014)PubMedPubMedCentralGoogle Scholar
  51. 51.
    Blowey, P.J., Velari, S., Rochford, L.A., Duncan, D.A., Warr, D.A., Lee, T.-L., De Vita, A., Costantini, G., Woodruff, D.P.: Re-evaluating how charge transfer modifies the conformation of adsorbed molecules. Nanoscale 10, 14984–14992 (2018)PubMedPubMedCentralGoogle Scholar
  52. 52.
    Yang, L., Zhao, Y.L., Li, K., Chen, Z.C., Zhang, P., Shi, W.Q.: Adsorption of CH\(_3\)I on Ag(111) and Ag\(_2\)O(111) surface: a density functional theory study. Chem. Phys. 513, 35–40 (2018)Google Scholar
  53. 53.
    Li, Y., Zhang, X., Xiao, S., Chen, D., Liu, C., Shi, Y.: Insights into the interaction between C4F7N decomposition products and Cu(111), Ag(111) surface. J. Fluorine Chem. 213, 24–30 (2018)Google Scholar
  54. 54.
    Kumagai, T., Ladenthin, J.N., Litman, Y., Rossi, M., Grill, L., Gawinkowski, S., Waluk, J., Persson, M.: Quantum tunneling in real space: tautomerization of single porphycene molecules on the (111) surface of Cu, Ag, and Au. J. Chem. Phys. 148, 102330–102338 (2018)PubMedGoogle Scholar
  55. 55.
    Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., Hutchison, G.R.: Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 4, 1–17 (2012)Google Scholar
  56. 56.
    Humphrey, W., Dalke, A., Schulten, K.: VMD - visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)PubMedGoogle Scholar
  57. 57.
    Boys, S., Bernardi, F.: The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors (Reprinted from Molecular Physics, vol 19, pg 553-566, 1970). Mol. Phys. 100, 65–73 (2002)Google Scholar
  58. 58.
    Zhang, X., Cui, Z., Yi, L., Li, Y., Xiao, H., Chen, D.: Theoretical study of the interaction of SF6 molecule on Ag(111) surfaces: a DFT study. Appl. Surf. Sci. 457, 745–751 (2018)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of BioengineeringAdana Alparslan Turkes Science and Technology UniversityAdanaTurkey

Personalised recommendations