Skip to main content
Log in

Interaction of pesticide pyroquilon with two different cucurbit[n]uril

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

In this work, we report a conceptual strategy for preventing pesticide degradation using cucurbit[n]uril to encapsulate pyroquilon (Pyn). The host–guest inclusion complexes of pyroquilon (Pyn) with CB[7] and CB[8] were prepared and characterized using 1H NMR spectroscopy, quadrupole-time of flight mass spectrometry (Q-TOF), isothermal titration calorimetry (ITC) and UV absorbance spectrophotometry. The experimental results revealed that the entire Pyn molecule resides within the cavities of CB[7] and CB[8], forming 1:1 inclusion complexes between CB[n] and Pyn. Our study on the release of Pyn demonstrated that CB[n]@Pyn exhibit sustained- and slow-release properties. Moreover, CB[8] can effectively shield UV irradiation and thereby protect the Pyn from photodegradation. Therefore, CB[7]@Pyn and CB[8]@Pyn have great potential to be used as slow-release agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu, B.X., Wang, Y., Yang, F., Wang, X., Shen, H., Cui, H.X., Wu, D.C.: Construction of a controlled-release delivery system for pesticides using biodegradable PLA-based microcapsules. Colloids Surf. B 144, 38–45 (2016)

    Article  CAS  Google Scholar 

  2. Jia, X., Sheng, W.B., Li, W., Tong, Y.B., Liu, Z.Y., Zhou, F.: Adhesive polydopamine coated avermectin microcapsules for prolonging foliar pesticide retention. ACS Appl. Mater. Interfaces. 6, 19552–19558 (2014)

    Article  CAS  PubMed  Google Scholar 

  3. Guan, H.N., Chi, D.F., Yu, J., Zhang, S.Y.: Novel photodegradable insecticide W/TiO2/avermectin nanocomposites obtained by polyelectrolytes assembly. Colloids Surf. B 83, 148–154 (2011)

    Article  CAS  Google Scholar 

  4. Li, Z.Z., Xu, S.A., Wen, L.X., Liu, F., Liu, A.Q., Wang, Q., Sun, H.Y., Yu, W., Chen, J.F.: Controlled release of avermectin from porous hollow silica nanoparticles: influence of shell thickness on loading efficiency, UV-shielding property and release. J. Control. Release 111, 81–88 (2006)

    Article  CAS  PubMed  Google Scholar 

  5. Xu, Y., Wang, L.L., Tong, Y.J., Xiang, S., Guo, X.Y., Li, J., Gao, H.X., Wu, X.M.: Study on the preparation, characterization, and release behavior of carbosulfan/polyurethane microcapsules. J. Appl. Polym. Sci. 133, 43844 (2016)

    Google Scholar 

  6. Kang, S., Baginska, M., White, S.R., Sottos, N.R.: Core–shell polymeric microcapsules with superior thermal and solvent stability. ACS Appl. Mater. Interfaces. 7, 10952–10956 (2015)

    Article  CAS  PubMed  Google Scholar 

  7. Alonso, M.L., Laza, J.M., Alonso, R.M., Jimenez, R.M., Vilas, J.L., Fananas, R.: Pesticides microencapsulation: a safe and sustainable industrial process. J. Chem. Technol. Biotechnol. 89(7), 1077–1085 (2013)

    Article  CAS  Google Scholar 

  8. Zhao, W.X., Wang, C.Z., Chen, L.X., Cong, H., Xin, X., Zhang, Y.Q., Xue, S.F., Huang, Y., Tao, Z., Zhu, Q.J.: A hemimethyl-substituted cucurbit[7]uril derived from 3α-methyl-glycoluril. Org. Lett. 17, 5072–5075 (2015)

    Article  CAS  PubMed  Google Scholar 

  9. Gong, L., Li, T.T., Chen, F., Duan, X.W., Yuan, Y.F., Zhang, D.D., Jiang, Y.M.: An inclusion complex of eugenol into b-cyclodextrin: preparation, and physicochemical and antifungal characterization. Food Chem. 196, 324–330 (2016)

    Article  CAS  PubMed  Google Scholar 

  10. Fan, Y., Gao, R.H., Xin, X., Tao, Z.: Inclusion complexes of hymexazol with three different cucurbit[n]uril: preparation, and physicochemical and antifungal characterization. Isr. J. Chem. 58, 466–471 (2018)

    Article  CAS  Google Scholar 

  11. Guo, Y.J., Guo, S.J., Li, J., Wang, E.K., Dong, S.J.: Cyclodextrin–graphene hybrid nanosheets as enhanced sensing platform for ultrasensitive determination of carbendazim. Talanta 84, 60–64 (2011)

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, C.X., Jing, X., Du, L.M., Liu, H.L., Li, J., Zhao, S.G., Fu, Y.L.: Cucurbit[7]uril host–guest complexation of nereistoxin investigated by competitive binding of palmatine fluorescent probe. Prog. React. Kinet. Mech. 40, 154–162 (2015)

    Article  CAS  Google Scholar 

  13. Lin, L., Zhu, Y.L., Thangaraj, B., Abdel-Samie, M.A.S., Cui, H.Y.: Improving the stability of thyme essential oil solid liposome by using β-cyclodextrin as a cryoprotectant. Carbohydr. Polym. 188, 243–251 (2018)

    Article  CAS  PubMed  Google Scholar 

  14. Liu, Q., Yang, Y., Li, H., Zhu, R., Shao, Q., Yang, S., Xu, J.: NiO nanoparticles modified with 5,10,15,20-tetrakis(4-carboxyl pheyl)-porphyrin: promising peroxidase mimetics for H2O2 and glucose detection. Biosens. Bioelectron. 64, 147–153 (2015)

    Article  CAS  PubMed  Google Scholar 

  15. Ding, Y., Yang, B., Liu, H., Liu, Z., Zhang, X., Zheng, X., Liu, Q.: FePt-Au ternary metallic nanoparticles with the enhanced peroxidase-like activity for ultrafast colorimetric detection of H2O2. Sensors Actuators B 259, 775–783 (2018)

    Article  CAS  Google Scholar 

  16. Liu, Q., Yang, Y., Lv, X., Ding, Y., Zhang, Y., Jing, J., Xu, C.: One-step synthesis of uniform nanoparticles of porphyrin functionalized ceria with promising peroxidase mimetics for H2O2 and glucose colorimetric detection. Sensors Actuators B 240, 726–734 (2017)

    Article  CAS  Google Scholar 

  17. Yusoff, S.N.M., Kamari, A., Aljafree, N.F.A.: A review of materials used as carrier agents in pesticide formulations. Int. J. Environ. Sci. Technol. 13, 2977–2994 (2016)

    Article  Google Scholar 

  18. Rutenberg, R., Bernstein, S., Fallik, E., Paster, N., Poverenov, E.: The improvement of propionic acid safety and use during the preservation of stored grains. Crop Prot. 110, 191–197 (2018)

    Article  CAS  Google Scholar 

  19. Kaziem, A.E., Gao, Y.H., He, S., Li, J.H.: Synthesis and insecticidal activity of enzyme-triggered functionalized hollow mesoporous silica for controlled release. J. Agric. Food Chem. 65, 7854–7864 (2017)

    Article  CAS  PubMed  Google Scholar 

  20. Wang, D.L., Jia, M.C., Wang, L.Y., Song, S., Feng, J.T., Zhang, X.: Chitosan and β-cyclodextrin-epichlorohydrin polymer composite film as a plant healthcare material for carbendazim-controlled release to protect rape against Sclerotinia sclerotiorum (Lib.) de Bary. Materials 10, 343–362 (2017)

    Article  PubMed Central  CAS  Google Scholar 

  21. Kaziem, A.E., Gao, Y.H., Zhang, Y., Qin, X.Y., Xiao, Y.N., Zhang, Y.H., You, H., Li, J.H., He, S.: α-Amylase triggered carriers based on cyclodextrin anchored hollow mesoporous silica for enhancing insecticidal activity of avermectin against Plutella xylostella. J. Hazard. Mater. 359, 213–221 (2018)

    Article  CAS  PubMed  Google Scholar 

  22. Marcos, X., Perez-Casas, S., Llovo, J., Concheiro, A., Alvarez-Lorenzo, C.: Poloxamer-hydroxyethyl cellulose-a-cyclodextrin supramolecular gels for sustained release of griseofulvin. Int. J. Pharm. 500, 11–19 (2016)

    Article  CAS  PubMed  Google Scholar 

  23. Cong, H., Ni, X.L., Xiao, X., Huang, Y., Zhu, Q.J., Xue, S.F., Tao, Z., Lindoy, L.F., Wei, G.: Synthesis and separation of cucurbit[n]urils and their derivatives. Org. Biomol. Chem. 14, 4335–4364 (2016)

    Article  CAS  PubMed  Google Scholar 

  24. Day, A.I., Arnold, A.P., Blanch, R.J.: Method for synthesis of cucurbiturils, PCT Int. Appl., WO 2000068232A1 20001116 (2000)

  25. Kim, J., Jung, I.S., Kim, S.Y., Lee, E., Kang, J.K., Sakamoto, S., Yamaguchi, K., Kim, K.: New cucurbituril homologues: syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n = 5, 7, and 8). J. Am. Chem. Soc. 122, 540–541 (2000)

    Article  CAS  Google Scholar 

  26. Kim, K.: Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies. Chem. Soc. Rev. 31, 96–107 (2002)

    Article  CAS  PubMed  Google Scholar 

  27. Dsouza, R.N., Pischel, U., Nau, W.M.: Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution. Chem. Rev. 111, 7941–7980 (2011)

    Article  CAS  PubMed  Google Scholar 

  28. Gao, R.H., Chen, L.X., Chen, K., Tao, Z., Xiao, X.: Development of hydroxylated cucurbit[n]urils, their derivatives and potential applications. Coord. Chem. Rev. 348, 1–24 (2017)

    Article  CAS  Google Scholar 

  29. Liu, J., Lan, Y., Yu, Z.Y., Tan, C.S.Y., Parker, R.M., Abell, C., Scherman, O.A.: Cucurbit[n]uril-based microcapsules self-assembled within microfluidic droplets: a versatile approach for supramolecular architectures and materials. Acc. Chem. Res. 50, 208–217 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang, L.G., Kan, J.L., Wang, X., Zhang, Y.H., Tao, Z., Liu, Q.Y., Wang, F., Xiao, X.: Study on the binding interaction of the α,α′,δ,δ′-tetramethylcucurbit[6]uril with biogenic amines in solution and the solid state. Front. Chem. 6, Article 289 (2018)

  31. Murray, J., Kim, K., Ogoshi, T., Yao, W., Gibb, B.C.: The aqueous supramolecular chemistry of cucurbit[n]urils, pillar[n]arenes and deep-cavity cavitands. Chem. Soc. Rev. 46, 2479–2496 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, X.X., Chen, K., Shen, F.F., Hua, Z.Y., Qiu, S.C., Zhang, Y.Q., Cong, H., Liu, Q.Y., Tao, Z., Xiao, X.: A new member of the inverted cucurbit[n]uril family. Chemistry 23(67), 16953–16956 (2017)

    Article  CAS  PubMed  Google Scholar 

  33. Gao, Z.Z., Kan, J.L., Tao, Z., Bian, B., Xiao, X.: Stimuli-responsive supramolecular assembly between inverted cucurbit[7]uril and hemicyanine dye. N. J. Chem. 42, 15420–15426 (2018)

    Article  CAS  Google Scholar 

  34. Shan, P.H., Tu, S.C., Lin, R.L., Tao, Z., Liu, J.X., Xiao, X.: Supramolecular complexes of α, α’, δ, δ’-tetramethyl-cucurbit[6]uril binding with enantiomeric amino acids. CrystEngComm 19, 2168–2171 (2017)

    Article  CAS  Google Scholar 

  35. Xiao, X., Gao, Z.Z., Shan, C.L., Tao, Z., Zhu, Q.J., Xue, S.F., Liu, J.X.: Encapsulation of haloalkane 1-(3-chlorophenyl)-4-(3-chloropropyl)-piperazinium in symmetrical α, α′, δ, δ′-tetramethyl-cucurbit[6]uril. Phys. Chem. Chem. Phys. 17, 8618–8621 (2015)

    Article  CAS  PubMed  Google Scholar 

  36. Barrow, S.J., Kasera, S., Rowland, M.J., Barrio, J.D., Scherman, O.A.: Cucurbituril-based molecular recognition. Chem. Rev. 115, 12320–12406 (2015)

    Article  CAS  PubMed  Google Scholar 

  37. Assaf, K.I., Nau, W.M.: Cucurbiturils: from synthesis to high-affinity binding and catalysis. Chem. Soc. Rev. 44, 394–418 (2015)

    Article  CAS  PubMed  Google Scholar 

  38. Isaacs, L.: Stimuli responsive systems constructed using cucurbit[n]uril-type molecular containers. Acc. Chem. Res. 47, 2052–2062 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kaifer, A.E.: Toward reversible control of cucurbit[n]uril complexes. Acc. Chem. Res. 47, 2160–2167 (2014)

    Article  CAS  PubMed  Google Scholar 

  40. Yi, S., Kaifer, A.E.: Determination of the purity of cucurbit[n]uril (n = 7, 8) host samples. J. Org. Chem. 76, 10275–10278 (2011)

    Article  CAS  PubMed  Google Scholar 

  41. Koner, A.L., Ghosh, I., Saleh, N., Nau, W.M.: Supramolecular encapsulation of benzimidazole-derived drugs by cucuibi[7]uril. Can. J. Chem. 89, 139–147 (2011)

    Article  CAS  Google Scholar 

  42. Ghosh, I., Nau, W.M.: The strategic use of supramolecular pKa shifts to enhance the bioavailability of drugs. Adv. Drug Deliv. Rev. 64, 764–783 (2012)

    Article  CAS  PubMed  Google Scholar 

  43. Liu, Q., Tang, Q., Xi, Y.Y., Huang, Y., Xiao, X., Tao, Z., Xue, S.F., Zhu, Q.J., Zhang, J.X., Wei, G.: Host–guest interactions of thiabendazole with normal and modified cucurbituril: 1H NMR, phase solubility and antifungal activity studies. Supramol. Chem. 27, 386–392 (2015)

    Article  CAS  Google Scholar 

  44. Bassam, S.E., Benhamou, N., Carisse, O.: The role of melanin in the antagonistic interaction between the apple scab pathogen Venturia inaequalis and Microsphaeropsis ochracea. Can. J. Microbiol. 48, 349–358 (2002)

    Article  PubMed  Google Scholar 

  45. Day, A.I., Arnold, A.P.: WO Patent 0068232, 8 (2000)

Download references

Acknowledgements

We acknowledge the support of the “Chun Hui” Project of the Chinese Ministry of Education (No. Z2017001), the Creative Research Groups of Guizhou Provincial Education Department (2017-028), the Science and Technology Program of Guizhou Province (No. 20185781), and the Innovation Program for High-level Talents of Guizhou Province (No. 2016-5657).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhu Tao, Gang Wei or Xin Xiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4935 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Gao, R., Jiang, Y. et al. Interaction of pesticide pyroquilon with two different cucurbit[n]uril. J Incl Phenom Macrocycl Chem 95, 207–213 (2019). https://doi.org/10.1007/s10847-019-00936-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-019-00936-4

Keywords

Navigation