Advertisement

Hydrogen-bonded supramolecular metal-imidazolate frameworks: gas sorption, magnetic and UV/Vis spectroscopic properties

  • Anas Alrefai
  • Suvendu Sekhar Mondal
  • Alexander Wruck
  • Alexandra Kelling
  • Uwe Schilde
  • Philipp Brandt
  • Christoph Janiak
  • Sophie Schönfeld
  • Birgit Weber
  • Lawrence Rybakowski
  • Carmen Herrman
  • Katlen Brennenstuhl
  • Sascha Eidner
  • Michael U. Kumke
  • Karsten Behrens
  • Christina Günter
  • Holger Müller
  • Hans-Jürgen HoldtEmail author
Original Article
  • 123 Downloads

Abstract

By varying reaction parameters for the syntheses of the hydrogen-bonded metal-imidazolate frameworks (HIF) HIF-1 and HIF-2 (featuring 14 Zn and 14 Co atoms, respectively) to increase their yields and crystallinity, we found that HIF-1 is generated in two different frameworks, named as HIF-1a and HIF-1b. HIF-1b is isostructural to HIF-2. We determined the gas sorption and magnetic properties of HIF-2. In comparison to HIF-1a (Brunauer–Emmett–Teller (BET) surface area of 471 m2 g−1), HIF-2 possesses overall very low gas sorption uptake capacities [BET(CO2) surface area = 85 m2 g−1]. Variable temperature magnetic susceptibility measurement of HIF-2 showed antiferromagnetic exchange interactions between the cobalt(II) high-spin centres at lower temperature. Theoretical analysis by density functional theory confirmed this finding. The UV/Vis-reflection spectra of HIF-1 (mixture of HIF-1a and b), HIF-2 and HIF-3 (with 14 Cd atoms) were measured and showed a characteristic absorption band centered at 340 nm, which was indicative for differences in the imidazolate framework.

Keywords

Gas-sorption Ligand design Magnetic properties Supramolecular chemistry Solvothermal synthesis 

Notes

Acknowledgements

The authors thank Dr. J. Traeger and Ms. S. Lubahn (Universität Potsdam) for the ICP OES measurements.

Supplementary material

10847_2019_926_MOESM1_ESM.docx (24.6 mb)
Electronic supplementary material 1 (DOCX 25166 kb)

References

  1. 1.
    Guillerm, V., Kim, D., Eubank, J.F., Luebke, R., Liu, X., Adil, K., Lah, M.S., Eddaoudi, M.: A supramolecular building approach for the design and construction of metal-organic frameworks. Chem. Soc. Rev. 43, 6141–6172 (2014)CrossRefPubMedGoogle Scholar
  2. 2.
    Eddaoudi, M., Sava, D.F., Eubank, J.F., Adil, K., Guillerm, V.: Zeolite-like metal-organic frameworks (ZMOFs): design, synthesis, and properties. Chem. Soc. Rev. 44, 228–249 (2015)CrossRefPubMedGoogle Scholar
  3. 3.
    Sava, D.F., Kravtsov, V.C., Eckert, J., Eubank, J.F., Nouar, F., Eddaoudi, M.: Exceptional stability and high hydrogen uptake in hydrogen-bonded metal-organic cubes possessing ACO and AST zeolite-like topologies. J. Am. Chem. Soc. 131, 10394–10396 (2009)CrossRefPubMedGoogle Scholar
  4. 4.
    Guo, X.-Q., Wang, M., Meng, F., Tang, Y.-F., Tian, S., Yang, H.-L., Jiang, G.-Q., Zhu, J.-L.: Rational design and synthesis of an amino-functionalized hydrogen-bonded network with an ACO zeolite-like topology for gas storage. CrystEngComm 18, 5616–5619 (2016)CrossRefGoogle Scholar
  5. 5.
    Mondal, S.S., Bhunia, A., Kelling, A., Schilde, U., Janiak, C., Holdt, H.-J.: Giant Zn14 molecular building block in hydrogen-bonded network with permanent porosity for gas uptake. J. Am. Chem. Soc. 136, 44–47 (2014)CrossRefPubMedGoogle Scholar
  6. 6.
    Mondal, S.S., Bhunia, A., Kelling, A., Schilde, U., Janiak, C., Holdt, H.-J.: A supramolecular Co(II)14-metal-organic cube in a hydrogen-bonded network and a Co(II)-organic framework with a flexible methoxy substituent. Chem. Commun. 50, 5441–5443 (2014)CrossRefGoogle Scholar
  7. 7.
    Mondal, S.S., Dey, S., Attallah, A.G., Bhunia, A., Kelling, A., Schilde, U., Krause-Rehberg, R., Janiak, C., Holdt, H.-J.: Missing building blocks defects in a porous hydrogen-bonded amide-imidazolate network proven by positron annihilation lifetime spectroscopy. Chem. Sel. 1, 4320–4325 (2016)Google Scholar
  8. 8.
    Bhunia, A., Boldog, I., Möller, A., Janiak, C.: Highly stable nanoporous covalent triazine-based frameworks with an adamantane core for carbon dioxide sorption and separation. J. Mater. Chem. A 1, 14990–14999 (2013)CrossRefGoogle Scholar
  9. 9.
    Mondal, S.S., Dey, S., Baburin, I.A., Kelling, A., Schilde, U., Seifert, G., Janiak, C., Holdt, H.-J.: Syntheses of two imidazolate-4-amide-5-imidate linker-based hexagonal metal-organic frameworks with flexible ethoxy substituent. CrystEngComm 15, 9394–9399 (2013)CrossRefGoogle Scholar
  10. 10.
    Mondal, S.S., Bhunia, A., Attallah, A.G., Matthes, P.R., Kelling, A., Schilde, U., Müller-Buschbaum, K., Krause-Rehberg, R., Janiak, C., Holdt, H.-J.: Study of the discrepancies between crystallographic porosity and guest access into cadmium-imidazolate framework and tunable luminescent properties by incorporation of lanthanides. Chem. Eur. J. 22, 6905–6913 (2016)CrossRefPubMedGoogle Scholar
  11. 11.
    Steenbock, T., Tasche, J., Lichtenstein, A.I., Herrmann, C.: A Green’s-function approach to exchange spin coupling as a new tool for quantum chemistry. J. Chem. Theory Comput. 11, 5651 (2015)CrossRefPubMedGoogle Scholar
  12. 12.
    Leddver, A.B.P.: Inorganic Electronic Spectroscopy, p. 323. Elsevier, Amsterdam (1968)Google Scholar
  13. 13.
    Ciampolini, M., Nardi, N.: Complexes of bivalent iron, cobalt, nickel, and copper with bis(2-dimethylaminoethyl)oxide. Inorg. Chem. 6, 445–449 (1967)CrossRefGoogle Scholar
  14. 14.
    Anderson, W.K., Bhattacharjee, D., Houston, D.M.: Design, synthesis, antineoplastic activity, and chemical properties of bis(carbamate) derivatives of 4,5-bis(hydroxymethyl)-imidazole. J. Med. Chem. 32, 119–127 (1989)CrossRefPubMedGoogle Scholar
  15. 15.
    Kahn, O.: Molecular Magnetism. VCH, New York (1993)Google Scholar
  16. 16.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, N.J., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, Revision A.1. Gaussian Inc., Wallingford, CT (2009)Google Scholar
  17. 17.
    Parr, R.G., Yang, W.: Density-Functional Theory of Atoms and Molecules. Oxford University Press, New York (1989)Google Scholar
  18. 18.
    Cramer, C.J., Truhlar, D.G.: Density functional theory for transition metals and transition metal chemistry. Phys. Chem. Chem. Phys. 11, 10757 (2019)CrossRefGoogle Scholar
  19. 19.
    Weigend, F., Ahlrichs, R.: Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005)CrossRefPubMedGoogle Scholar
  20. 20.
    Weigend, F.: Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 8, 1057–1065 (2006)CrossRefPubMedGoogle Scholar
  21. 21.
    Becke, A.: Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098 (1988)CrossRefGoogle Scholar
  22. 22.
    Dirac, P.: Quantum mechanics of many-electron systems. Proc. R. Soc. A 123, 714 (1929)CrossRefGoogle Scholar
  23. 23.
    Slater, J.: A simplification of the Hartree–Fock method. Phys. Rev. 81, 385 (1951)CrossRefGoogle Scholar
  24. 24.
    Vosko, S., Wilk, L., Nusair, M.: Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 58, 1200 (1980)CrossRefGoogle Scholar
  25. 25.
    Lee, C., Yang, W., Parr, R.: Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785 (1988)CrossRefGoogle Scholar
  26. 26.
    Becke, A.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)CrossRefGoogle Scholar
  27. 27.
    Perdew, J., Wang, Y.: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B. 45, 1200 (1992)CrossRefGoogle Scholar
  28. 28.
    Steenbock, T., Herrmann, C.: Towards an automated analysis of exchange pathways in spin-coupled systems. J. Comp. Chem. 39, 81–92 (2018)CrossRefGoogle Scholar
  29. 29.
    Deffner, M., Groß, L., Steenbock, T., Voigt, B. A., Solomon, G. C., Herrmann, C.: Artaios—a code for postprocessing quantum chemical electronic structure calculations. https://www.chemie.uni-hamburg.de/ac/herrmann/software/index.html (2008–2019)
  30. 30.
    Liechtenstein, A.I., Katsnelson, M.I., Gubanov, V.: Exchange interactions and spin-wave stiffness in ferromagnetic metals. J. Phys. F 14, L125–L128 (1984)CrossRefGoogle Scholar
  31. 31.
    Han, M., Ozaki, T., Yu, J.: Electronic structure, magnetic interactions, and the role of ligands in Mnn(n = 4, 12) single-molecule magnets. Phys. Rev. B 70, 184421 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Anas Alrefai
    • 1
  • Suvendu Sekhar Mondal
    • 1
  • Alexander Wruck
    • 1
  • Alexandra Kelling
    • 1
  • Uwe Schilde
    • 1
  • Philipp Brandt
    • 2
  • Christoph Janiak
    • 2
  • Sophie Schönfeld
    • 3
  • Birgit Weber
    • 3
  • Lawrence Rybakowski
    • 4
  • Carmen Herrman
    • 4
  • Katlen Brennenstuhl
    • 5
  • Sascha Eidner
    • 5
  • Michael U. Kumke
    • 5
  • Karsten Behrens
    • 1
  • Christina Günter
    • 6
  • Holger Müller
    • 1
  • Hans-Jürgen Holdt
    • 1
    Email author
  1. 1.Institut für Chemie, Anorganische ChemieUniversität PotsdamPotsdam-GolmGermany
  2. 2.Institut für Anorganische-und Strukturchemie I, Heinrich-Heine-Universität DüsseldorfDüsseldorfGermany
  3. 3.Anorganische Chemie IVUniversität BayreuthBayreuthGermany
  4. 4.Institut für Anorganische und Angewandte ChemieUniversität HamburgHamburgGermany
  5. 5.Institut für Chemie, Physikalische ChemieUniversität PotsdamPotsdam-GolmGermany
  6. 6.Institut für GeowissenschaftenUniversität PotsdamPotsdam-GolmGermany

Personalised recommendations