Synthesis and characterization of Co(II) and Mn(II) [M3L3] triangles

  • Tyson N. Dais
  • Michael J. Brown
  • Martyn P. Coles
  • François Laur
  • Jason R. Price
  • Gareth J. Rowlands
  • Paul G. PliegerEmail author
Original Article


We report an improved method to make the ligand N,N′-(pyrazine-2,5-diylbis(methanylylidene))bis(2-(pyridin-2-yl)ethanamine) (L) and the subsequent complexation of this ligand to make the triangular metallo-macrocycles [Co3L3](ClO4)6·2H2O (C1·2H2O) and [Mn3L3](ClO4)6·3H2O (C2·3H2O). Single crystal X-ray analysis of both trimeric circular helicates reveal the complexes pack in enantiomeric pairs in close synergy with the accompanying anions.

Graphical abstract


Cyclohelicates Cobalt Manganese Pyrazine Metallo-macrocycle 



  1. 1.
    Bark, T., Düggeli, M., Stoeckli-Evans, H., von Zelewsky, A.: Designed molecules for self-assembly: the controlled formation of two chiral self-assembled polynuclear species with predetermined configuration. Angew. Chem. Int. Ed. 40(15), 2848–2851 (2001)CrossRefGoogle Scholar
  2. 2.
    Hausmann, J., Brooker, S.: Control of molecular architecture by use of the appropriate ligand isomer: a mononuclear “corner-type” versus a tetranuclear [2 × 2] grid-type cobalt(III) complex. Chem. Commun. 13, 1530–1531 (2004)CrossRefGoogle Scholar
  3. 3.
    Hogue, R.W., Dhers, S., Hellyer, R.M., Luo, J., Hanan, G.S., Larsen, D.S., Garden, A.L., Brooker, S.: Self-assembly of cyclohelicate [M3L3] triangles Over [M4L4] squares, despite near-linear bis-terdentate L and octahedral M. Chem. Eur. J. 23(57), 14100–14100 (2017)CrossRefGoogle Scholar
  4. 4.
    Steed, J.W., Atwood, J.L.: Supramolecular chemistry. Wiley, Hoboken (2013)Google Scholar
  5. 5.
    Zhang, L., August, D.P., Zhong, J., Whitehead, G.F.S., Vitorica-Yrezabal, I.J., Leigh, D.A.: Molecular trefoil knot from a trimeric circular helicate. J. Am. Chem. Soc. 140(15), 4982–4985 (2018)CrossRefGoogle Scholar
  6. 6.
    Greig, L.M., Philp, D.: Applying biological principles to the assembly and selection of synthetic superstructures. Chem. Soc. Rev. 30(5), 287–302 (2001)CrossRefGoogle Scholar
  7. 7.
    Hanan, G.S., Volkmer, D., Lehn, J.-M.: Coordination arrays—synthesis and characterization of tetranuclear complexes of grid-type. Can. J. Chem. 82(10), 1428–1434 (2004)CrossRefGoogle Scholar
  8. 8.
    Holliday, B.J., Mirkin, C.A.: Strategies for the construction of supramolecular compounds through coordination chemistry. Angew. Chem. Int. Ed. 40(11), 2022–2043 (2001)CrossRefGoogle Scholar
  9. 9.
    Leininger, S., Olenyuk, B., Stang, P.J.: Self-assembly of discrete cyclic nanostructures mediated by transition metals. Chem. Rev. 100(3), 853–908 (2000)CrossRefGoogle Scholar
  10. 10.
    Chakrabarty, R., Mukherjee, P.S., Stang, P.J.: Supramolecular coordination: self-assembly of finite two- and three-dimensional ensembles. Chem. Rev. 111(11), 6810–6918 (2011)CrossRefGoogle Scholar
  11. 11.
    Hausmann, J.: Transition Metal complexes of pyrazine based bis-terdentate diamide ligands. University of Otago, New Zealand (2004)Google Scholar
  12. 12.
    Shen, F., Huang, W., Wu, D., Zheng, Z., Huang, X.-C., Sato, O.: Redox modulation of spin crossover within a cobalt metallogrid. Inorg. Chem. 55(2), 902–908 (2016)CrossRefGoogle Scholar
  13. 13.
    Plieger, P.G., Downard, A.J., Moubaraki, B., Murray, K.S., Brooker, S.: Dimetallic complexes of acyclic pyridine-armed ligands derived from 3,6-diformylpyridazine. Dalton Trans. 14, 2157–2165 (2004)CrossRefGoogle Scholar
  14. 14.
    Coufal, R., Prusková, M., Císařová, I., Drahoňovský, D., Vohlídal, J.: Simple and efficient access to pyrazine-2,5- and -2,6-dicarbaldehydes. Synth. Commun. 46(4), 348–354 (2016)CrossRefGoogle Scholar
  15. 15.
    Brooker, S., Kelly, R.J.: Synthesis and structure of dilead(II) and dimanganese(II) complexes of macrocycles derived from 3,6-diformylpyridazine. J. Chem. Soc. Dalton Trans. 10, 2117–2122 (1996)CrossRefGoogle Scholar
  16. 16.
    Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., Puschmann, H.: OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42(2), 339–341 (2009)CrossRefGoogle Scholar
  17. 17.
    Palatinus, L., van der Lee, A.: Symmetry determination following structure solution in P1. J. Appl. Crystallogr. 41(6), 975–984 (2008)CrossRefGoogle Scholar
  18. 18.
    Sheldrick, G.M.: Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C. 71, 3–8 (2015)CrossRefGoogle Scholar
  19. 19.
    Kabsch, W.: XDS. Acta Crystallogr. Sect. D. 66, 125–132 (2010)CrossRefGoogle Scholar
  20. 20.
    Winn, M.D., Ballard, C.C., Cowtan, K.D., Dodson, E.J., Emsley, P., Evans, P.R., Keegan, R.M., Krissinel, E.B., Leslie, A.G.W., McCoy, A., McNicholas, S.J., Murshudov, G.N., Pannu, N.S., Potterton, E.A., Powell, H.R., Read, R.J., Vagin, A., Wilson, K.S.: Overview of the CCP4 suite and current developments. Acta Crystallogr. Sect. D. 67(4), 235–242 (2011)CrossRefGoogle Scholar
  21. 21.
    Spek, A.: Platon squeeze: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallogr. Sect. C. 71(1), 9–18 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Tyson N. Dais
    • 1
  • Michael J. Brown
    • 1
  • Martyn P. Coles
    • 2
  • François Laur
    • 3
  • Jason R. Price
    • 4
  • Gareth J. Rowlands
    • 1
  • Paul G. Plieger
    • 1
    Email author
  1. 1.School of Fundamental SciencesMassey UniversityPalmerston NorthNew Zealand
  2. 2.School of Chemical and Physical SciencesVictoria University of WellingtonWellingtonNew Zealand
  3. 3.Faculté de Sciences Fondamentales et AppliquéesUniversité de PoitiersPoitiers Cedex 9France
  4. 4.Australian SynchrotronClaytonAustralia

Personalised recommendations