Analytical tools for cyclodextrin nanosponges in pharmaceutical field: a review

  • Sunil Kumar
  • Rekha RaoEmail author
Review Article


With the growing popularity of the nanomedicine-based pharmaceutical market, active molecules from chemical and natural origin are encapsulated in various nanocarriers enhancing their therapeutic efficacy. Depending upon the fabricated functionality, cyclodextrin based nanosponges has become a potential vehicle to encapsulate the active molecules. To explore nanosponges-based delivery system in pharmacy, knowledge of the analytical tools that could significantly assess their quality parameters, has major role for researchers working in this field. Owing to understand their benefits and potential toxicity, characteristic features like safety, negligible toxicity, superior inclusion capability, marked swelling behaviour and biodegradability are the primarily basis for their use in drug delivery, drug targeting, tissue engineering and regenerative medicine. This review article focuses on the various aspects of analytical techniques applied for characterization of nanosponges, which may affect quality of these nanocarriers. Subsequently, the challenges for characterization of these systems have been especially emphasized. In addition, sincere efforts have been made to compile various analytical techniques for description and understanding of these nanostructures from existing literature. Recommendations and suggestions are also mentioned while selecting suitable analytic techniques to characterize the quality parameters of nanosponges.


Porous particles Analytical technique Microscopy Spectroscopy Thermal analysis Zeta potential 



The author, Sunil Kumar sincerely expresses gratitude to Indian Council of Medical Research, New Delhi for providing Senior Research Fellowship (Letter No: 45/44/2018-Nan/BMS).

Compliance with ethical standards

Conflict of interest

The authors report no conflicts of interest in this work.


  1. 1.
    Trotta, F., Cavalli, R.: Characterization and applications of new hyper-cross-linked cyclodextrins. Compos. Interface 16(1), 39–48 (2009)Google Scholar
  2. 2.
    Trotta, F., Zanetti, M., Cavalli, R.: Cyclodextrin-based nanosponges as drug carriers. Beilstein J. Org. Chem. 8(1), 2091–2099 (2012)Google Scholar
  3. 3.
    David, F.: Nanosponge drug delivery system more effective than direct injection (2011)Google Scholar
  4. 4.
    Selvamuthukumar, S., Anandam, S., Krishnamoorthy, K., Rajappan, M.: Nanosponges: a novel class of drug delivery system-review. J. Pharm. Pharm. Sci. 15(1), 103–111 (2012)Google Scholar
  5. 5.
    Ahmed, R.Z., Patil, G., Zaheer, Z.: Nanosponges–a completely new nano-horizon: pharmaceutical applications and recent advances. Drug Dev. Ind. Pharm. 39(9), 1263–1272 (2013)Google Scholar
  6. 6.
    Li, D., Ma, M.: Cyclodextrin polymer separation materials. Patent WO, 9822197 (1998)Google Scholar
  7. 7.
    Trotta, F., Cavalli, R., Tumiatti, W., Zerbinati, O., Roggero, C., Vallero, R.: Ultrasound-assisted synthesis of cyclodextrin-based nanosponges. WO2006002814 A1 (2006)Google Scholar
  8. 8.
    Trotta, F., Tumiatti, V., Cavalli, R., Rogero, C., Mognetti, B., Berta, G.: Cyclodextrin-based nanosponges as a vehicle for antitumoral drugs. WO, 3656, p. A1 (2009)Google Scholar
  9. 9.
    Trotta, F., Shende, P., Biasizzo, M.: Method for preparing dextrin nanosponges. WO2012147069 A1 (2012)Google Scholar
  10. 10.
    Swaminathan, S., Vavia, P.R., Trotta, F., Cavalli, R., Tumbiolo, S., Bertinetti, L., Coluccia, S.: Structural evidence of differential forms of nanosponges of beta-cyclodextrin and its effect on solubilization of a model drug. J. Incl. Phenom. Macrocycl. Chem. 76(1–2), 201–211 (2013)Google Scholar
  11. 11.
    Darandale, S.S., Vavia, P.R.: Cyclodextrin-based nanosponges of curcumin: formulation and physicochemical characterization. J. Incl. Phenom. Macrocycl. Chem. 75(3–4), 315–322 (2013)Google Scholar
  12. 12.
    Rao, M.R., Shirsath, C.: Enhancement of bioavailability of non-nucleoside reverse transcriptase inhibitor using nanosponges. AAPS PharmSciTech 18(5), 1728–1738 (2017)Google Scholar
  13. 13.
    Kumar, S., Pooja, S., Trotta, F., Rao, R.: Encapsulation of babchi oil in cyclodextrin-based nanosponges: physicochemical characterization, photodegradation, and in vitro cytotoxicity studies. Pharmaceutics 10(4), 169 (2018). Google Scholar
  14. 14.
    Sharma, R., Pathak, K.: Polymeric nanosponges as an alternative carrier for improved retention of econazole nitrate onto the skin through topical hydrogel formulation. Pharm. Dev. Technol. 16(4), 367–376 (2011)Google Scholar
  15. 15.
    Anandam, S., Selvamuthukumar, S.: Optimization of microwave-assisted synthesis of cyclodextrin nanosponges using response surface methodology. J. Porous Mat. 21(6), 1015–1023 (2014)Google Scholar
  16. 16.
    Swaminathan, S., Darandale, S., Vavia, P.R.: Drug delivery| bioavailability-nanosponge-aided drug delivery: a closer look. Pharm. Formul. Qual. 14(5), 12–15 (2012)Google Scholar
  17. 17.
    Shende, P., Kulkarni, Y.A., Gaud, R.S., Deshmukh, K., Cavalli, R., Trotta, F., Caldera, F.: Acute and repeated dose toxicity studies of different β-cyclodextrin-based nanosponge formulations. J. Pharm. Sci. 104(5), 1856–1863 (2015)Google Scholar
  18. 18.
    Chilajwar, S.V., Pednekar, P.P., Jadhav, K.R., Gupta, G.J., Kadam, V.J.: Cyclodextrin-based nanosponges: a propitious platform for enhancing drug delivery. Exp. Opin. Drug Deliv. 11(1), 111–120 (2014)Google Scholar
  19. 19.
    Tejashri, G., Amrita, B., Darshana, J.: Cyclodextrin based nanosponges for pharmaceutical use: a review. Acta. Pharm. 63(3), 335–358 (2013)Google Scholar
  20. 20.
    Sherje, A.P., Dravyakar, B.R., Kadam, D., Jadhav, M.: Cyclodextrin-based nanosponges: a critical review. Carbohydr. Polym. 173, 37–49 (2017)Google Scholar
  21. 21.
    Venuti, V., Rossi, B., Mele, A., Melone, L., Punta, C., Majolino, D., Masciovecchio, C., Caldera, F., Trotta, F.: Tuning structural parameters for the optimization of drug delivery performance of cyclodextrin-based nanosponges. Expert Opin. Drug Deliv. 14(3), 331–340 (2016)Google Scholar
  22. 22.
    Indira, B., Bolisetti, S.S., Samrat, C., Reddy, S.M., Reddy, N.S.: Nanosponges: a new era in drug delivery: review. J. Pharm. Res. 5(11), 5293–5296 (2012)Google Scholar
  23. 23.
    Szejtli, J.: Cyclodextrins and Their Inclusion Complexes (Akademiai Kiado, Budapest, 1982); J. Szejtli, Cyclodextrin Technology (1988)Google Scholar
  24. 24.
    Ansari, K.A., Vavia, P.R., Trotta, F., Cavalli, R.: Cyclodextrin-based nanosponges for delivery of resveratrol: in vitro characterisation, stability, cytotoxicity and permeation study. AAPS PharmSciTech 12(1), 279–286 (2011)Google Scholar
  25. 25.
    Shende, P.K., Trotta, F., Gaud, R.S., Deshmukh, K., Cavalli, R., Biasizzo, M.: Influence of different techniques on formulation and comparative characterization of inclusion complexes of ASA with β-cyclodextrin and inclusion complexes of ASA with PMDA cross-linked β-cyclodextrin nanosponges. J. Incl. Phenom. Macrocycl. Chem. 74(1–4), 447–454 (2012)Google Scholar
  26. 26.
    Rao, M., Bajaj, A., Khole, I., Munjapara, G., Trotta, F.: In vitro and in vivo evaluation of β-cyclodextrin-based nanosponges of telmisartan. J. Incl. Phenom. Macrocycl. Chem. 77(1–4), 135–145 (2013)Google Scholar
  27. 27.
    Olteanu, A.A., Arama, C.C., Radu, C., Mihaescu, C., Monciu, C.M.: Effect of β-cyclodextrins based nanosponges on the solubility of lipophilic pharmacological active substances (repaglinide). J. Incl. Phenom. Macrocycl. Chem. 80(1–2), 17–24 (2014)Google Scholar
  28. 28.
    Anandam, S., Selvamuthukumar, S.: Fabrication of cyclodextrin nanosponges for quercetin delivery: physicochemical characterization, photostability, and antioxidant effects. J. Mater. Sci. 49(23), 8140–8153 (2014)Google Scholar
  29. 29.
    Mognetti, B., Barberis, A., Marino, S., Berta, G., De Francia, S., Trotta, F., Cavalli, R.: In vitro enhancement of anticancer activity of paclitaxel by a Cremophor free cyclodextrin-based nanosponge formulation. J. Incl. Phenom. Macrocycl. Chem. 74(1–4), 201–210 (2012)Google Scholar
  30. 30.
    Bragagni, M., Maestrelli, F., Mura, P.: Physical chemical characterization of binary systems of prilocaine hydrochloride with triacetyl-β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 68(3–4), 437–445 (2010)Google Scholar
  31. 31.
    Menezes, P.P., Serafini, M.R., Santana, B.V., Nunes, R.S., Quintans, L.J., Silva, G.F., Medeiros, I.A., Marchioro, M., Fraga, B.P., Santos, M.R., Araujo, A.A.: Solid-state β-cyclodextrin complexes containing geraniol. Thermochim. Acta 548, 45–50 (2012)Google Scholar
  32. 32.
    Cavalli, R., Trotta, F., Tumiatti, W.: Cyclodextrin-based nanosponges for drug delivery. J. Incl. Phenom. Macrocycl. Chem. 56(1–2), 209–213 (2006)Google Scholar
  33. 33.
    Swaminathan, S., Pastero, L., Serpe, L., Trotta, F., Vavia, P., Aquilano, D., Trotta, M., Zara, G., Cavalli, R.: Cyclodextrin-based nanosponges encapsulating camptothecin: physicochemical characterization, stability and cytotoxicity. Eur. J. Pharm. Biopharm. 74(2), 193–201 (2010)Google Scholar
  34. 34.
    Lembo, D., Swaminathan, S., Donalisio, M., Civra, A., Pastero, L., Aquilano, D., Vavia, P., Trotta, F., Cavalli, R.: Encapsulation of Acyclovir in new carboxylated cyclodextrin-based nanosponges improves the agent’s antiviral efficacy. Int. J. Pharm. 443(1), 262–272 (2013)Google Scholar
  35. 35.
    Kazarian, S.G., Wray, P.S.: Applications of FTIR spectroscopic imaging in pharmaceutical science. In: Ozaki, Y. (ed.) Raman, Infrared, and Near-Infrared Chemical Imaging, pp. 185–204. Wiley Online Library, Hoboken (2010)Google Scholar
  36. 36.
    Castiglione, F., Crupi, V., Majolino, D., Mele, A., Rossi, B., Trotta, F., Venuti, V.: Inside new materials: an experimental numerical approach for the structural elucidation of nanoporous cross-linked polymers. J. Phys. Chem. B. 116(43), 13133–13140 (2012)Google Scholar
  37. 37.
    Ramírez-Ambrosi, M., Caldera, F., Trotta, F., Berrueta, L.A., Gallo, B.: Encapsulation of apple polyphenols in β-CD nanosponges. J. Incl. Phenom. Macrocycl. Chem. 80(1–2), 85–92 (2014)Google Scholar
  38. 38.
    Castiglione, F., Crupi, V., Majolino, D., Mele, A., Melone, L., Panzeri, W., Punta, C., Rossi, B., Trotta, F., Venuti, V.: Gel-sol evolution of cyclodextrin-based nanosponges: role of the macrocycle size. J. Incl. Phenom. Macrocycl. Chem. 80(1–2), 77–83 (2014)Google Scholar
  39. 39.
    Rao, M.R., Bhingole, R.C.: Nanosponge-based pediatric-controlled release dry suspension of Gabapentin for reconstitution. Drug Dev. Ind. Pharm. 41(12), 2029–2036 (2015)Google Scholar
  40. 40.
    Shende, P.K., Gaud, R.S., Bakal, R., Patil, D.: Effect of inclusion complexation of meloxicam with β-cyclodextrin-and β-cyclodextrin-based nanosponges on solubility, in vitro release and stability studies. Colloids Surf. B. 136, 105–110 (2015)Google Scholar
  41. 41.
    Mihailiasa, M., Caldera, F., Li, J., Peila, R., Ferri, A., Trotta, F.: Preparation of functionalized cotton fabrics by means of melatonin loaded β-cyclodextrin nanosponges. Carbohydr. Polym. 142, 24–30 (2016)Google Scholar
  42. 42.
    Deshmukh, K., Tanwar, Y.S., Sharma, S., Shende, P., Cavalli, R.: Functionalized nanosponges for controlled antibacterial and antihypocalcemic actions. Biomed. Pharmacother. 84, 485–494 (2016)Google Scholar
  43. 43.
    Trotta, F., Caldera, F., Cavalli, R., Soster, M., Riedo, C., Biasizzo, M., Uccello Barretta, G., Balzano, F., Brunella, V.: Molecularly imprinted cyclodextrin nanosponges for the controlled delivery of L-DOPA: perspectives for the treatment of Parkinson’s disease. Expert Opin. Drug Deliv. 13(12), 1671–1680 (2016)Google Scholar
  44. 44.
    Singireddy, A., Subramanian, S.: Cyclodextrin nanosponges to enhance the dissolution profile of quercetin by inclusion complex formation. Particul. Sci. Technol. 34(3), 341–346 (2016)Google Scholar
  45. 45.
    Sundararajan, M., Thomas, P.A., Venkadeswaran, K., Jeganathan, K., Geraldine, P.: Synthesis and characterization of chrysin-loaded β-cyclodextrin-based nanosponges to enhance in-vitro solubility, photostability, drug release, antioxidant effects and antitumorous efficacy. J. Nanosci. Nanotechnol. 17(12), 8742–8751 (2017)Google Scholar
  46. 46.
    Zainuddin, R., Zaheer, Z., Sangshetti, J.N., Momin, M.: Enhancement of oral bioavailability of anti-HIV drug rilpivirine HCl through nanosponge formulation. Drug Dev. Ind. Pharm. 43(12), 2076–2084 (2017)Google Scholar
  47. 47.
    Coviello, V., Sartini, S., Quattrini, L., Baraldi, C., Gamberini, M.C., La Motta, C.: Cyclodextrin-based nanosponges for the targeted delivery of the anti-restenotic agent DB103: A novel opportunity for the local therapy of vessels wall subjected to percutaneous intervention. Eur. J. Pharm. Biopharm. 117, 276–285 (2017)Google Scholar
  48. 48.
    Mendes, C., Meirelles, G.C., Barp, C.G., Assreuy, J., Silva, M.A., Ponchel, G.: Cyclodextrin based nanosponge of norfloxacin: Intestinal permeation enhancement and improved antibacterial activity. Carbohydr. Polym. 195, 586–592 (2018)Google Scholar
  49. 49.
    Pushpalatha, R., Selvamuthukumar, S., Kilimozhi, D.: Cross-linked, cyclodextrin-based nanosponges for curcumin delivery-physicochemical characterization, drug release, stability and cytotoxicity. J. Drug Deliv. Sci. Technol. 45, 45–53 (2018)Google Scholar
  50. 50.
    Singh, P., Ren, X., Guo, T., Wu, L., Shakya, S., He, Y., Wang, C., Maharjan, A., Singh, V., Zhang, J.: Biofunctionalization of β-cyclodextrin nanosponges using cholesterol. Carbohydr. Polym. 190, 23–30 (2018)Google Scholar
  51. 51.
    Rao, M.R., Chaudhari, J., Trotta, F., Caldera, F.: Investigation of cyclodextrin-based nanosponges for solubility and bioavailability enhancement of rilpivirine. AAPS PharmSciTech (2018). Google Scholar
  52. 52.
    Argenziano, M., Lombardi, C., Ferrara, B., Trotta, F., Caldera, F., Blangetti, M., Koltai, H., Kapulnik, Y., Yarden, R., Gigliotti, L., Dianzani, U.: Glutathione/pH-responsive nanosponges enhance strigolactone delivery to prostate cancer cells. Oncotarget. 9(88), 35813–35829 (2018)Google Scholar
  53. 53.
    Mady, F.M., Ibrahim, M., Ragab, S.: Cyclodextrin-based nanosponge for improvement of solubility and oral bioavailability of Ellagic acid. Pak. J. Pharm. Sci. 31(5 Supplement Special), 2069–2076 (2018)Google Scholar
  54. 54.
    Zidan, M.F., Ibrahim, H.M., Afouna, M.I., Ibrahim, E.A.: In vitro and in vivo evaluation of cyclodextrin-based nanosponges for enhancing oral bioavailability of atorvastatin calcium. Ind. Pharm. Drug Dev. (2018). Google Scholar
  55. 55.
    Gabr, M.M., Mortada, S.M., Sallam, M.A.: Carboxylate cross-linked cyclodextrin: a nanoporous scaffold for enhancement of rosuvastatin oral bioavailability. Eur. J. Pharm. Sci. 111, 1–12 (2018). Google Scholar
  56. 56.
    Nait Bachir, Y., Nait Bachir, R., Hadj-Ziane-Zafour, A.: Nanodispersions stabilized by β-cyclodextrin nanosponges: application for simultaneous enhancement of bioactivity and stability of sage essential oil. Ind. Pharm. Drug Dev. (2018). Google Scholar
  57. 57.
    Raman, C.V., Krishnan, K.S.: A new type of secondary radiation. Nature 121, 501–502 (1928)Google Scholar
  58. 58.
    Franzen, L., Windbergs, M.: Applications of Raman spectroscopy in skin research—From skin physiology and diagnosis up to risk assessment and dermal drug delivery. Adv. Drug Deliv. Rev. 89, 91–104 (2015)Google Scholar
  59. 59.
    Mura, P.: Analytical techniques for characterization of cyclodextrin complexes in the solid state: a review. J. Pharm. Biomed. Anal. 113, 226–238 (2015)Google Scholar
  60. 60.
    Crupi, V., Fontana, A., Majolino, D., Mele, A., Melone, L., Punta, C., Rossi, B., Rossi, F., Trotta, F., Venuti, V.: Hydrogen-bond dynamics of water confined in cyclodextrin nanosponges hydrogel. J. Incl. Phenom. Macrocycl. Chem. 80(1–2), 69–75 (2014)Google Scholar
  61. 61.
    Rossi, B., Venuti, V., D’Amico, F., Gessini, A., Castiglione, F., Mele, A., Punta, C., Melone, L., Crupi, V., Majolino, D., Trotta, F.: Water and polymer dynamics in a model polysaccharide hydrogel: the role of hydrophobic/hydrophilic balance. Phys. Chem. Chem. Phys. 17(2), 963–971 (2015)Google Scholar
  62. 62.
    Shuker, S.B., Hajduk, P.J., Meadows, R.P., Fesik, S.W.: Discovering high-affinity ligands for proteins: SAR by NMR. Science 274(5292), 1531 (1996)Google Scholar
  63. 63.
    Ibanez, E., Cifuentes, A.: New analytical techniques in food science. Crit. Rev. Food Sci. Nutr. 41(6), 413–450 (2001)Google Scholar
  64. 64.
    Mistry, N., Ismail, I.M., Farrant, R.D., Liu, M., Nicholson, J.K., Lindon, J.C.: Impurity profiling in bulk pharmaceutical batches using 19 F NMR spectroscopy and distinction between monomeric and dimeric impurities by NMR-based diffusion measurements. J. Pharm. Biomed. Anal. 19(3), 511–517 (1999)Google Scholar
  65. 65.
    Salem, A.A., Mossa, H.A., Barsoum, B.N.: Application of nuclear magnetic resonance spectroscopy for quantitative analysis of miconazole, metronidazole and sulfamethoxazole in pharmaceutical and urine samples. J. Pharm. Biomed. Anal. 41(2), 654–661 (2006)Google Scholar
  66. 66.
    Reinscheid, U.M.: Direct determination of ciprofloxacin in admixtures with metronidazol and ampicillin by NMR. J. Pharm. Biomed. Anal. 40(2), 447–449 (2006)Google Scholar
  67. 67.
    Ferro, M., Castiglione, F., Punta, C., Melone, L., Panzeri, W., Rossi, B., Trotta, F., Mele, A.: Anomalous diffusion of Ibuprofen in cyclodextrin nanosponge hydrogels: an HRMAS NMR study. Beilstein J. Org. Chem. 10(1), 2715–2723 (2014)Google Scholar
  68. 68.
    Biliaderis, C.G.: Differential scanning calorimetry in food research-a review. Food Chem. 10(4), 239–265 (1983)Google Scholar
  69. 69.
    Cammenga, H.K., Epple, M.: Basic principles of thermoanalytical techniques and their applications in preparative chemistry. Angew. Chem. Int. Ed. Engl. 34(11), 1171–1187 (1995)Google Scholar
  70. 70.
    Chartoff, R.P., Turi, E.A.: Thermal Characterization of Polymeric Materials, vol. 1, p. 513. Academic Press, New York (1997)Google Scholar
  71. 71.
    Prime, R.B.: Thermosets. In: Turi, E.A. (ed.) Thermal Characterization of Polymeric Materials. Academic Press, San Diego (1997)Google Scholar
  72. 72.
    Bair, H.E.: Thermal analysis of additives in polymers. In: Turi, A. (ed.) Thermal Characterization of Polymeric Materials, vol. 2. Polytechnic University, New York (1997)Google Scholar
  73. 73.
    Gallagher, P.K.: Thermal Characterization of Polymeric Materials. Academic Press, San Diego (1997)Google Scholar
  74. 74.
    Wunderlich, B.: Basics of Thermal Analysis. Thermal Analysis of Polymeric Materials, pp. 71–188. Springer, Berlin (2005)Google Scholar
  75. 75.
    Riga, A., Collins, R.: Differential scanning calorimetry and differential thermal analysis. In: Meyer, R.A. (ed.) Encyclopedia of Analytical Chemistry. Wiley, Chichester (2000)Google Scholar
  76. 76.
    Chen, W., Yang, L.J., Ma, S.X., Yang, X.D., Fan, B.M., Lin, J.: Crassicauline A/β-cyclodextrin host–guest system: preparation, characterization, inclusion mode, solubilization and stability. Carbohydr. Polym. 84(4), 1321–1328 (2011)Google Scholar
  77. 77.
    Bettinetti, G., Mura, P., Faucci, M.T., Sorrenti, M., Setti, M.: Interaction of naproxen with noncrystalline acetyl β-and acetyl γ-cyclodextrins in the solid and liquid state. Eur. J. Pharm. Sci. 15(1), 21–29 (2002)Google Scholar
  78. 78.
    Wang, D.W., Ouyang, C.B., Liu, Q., Yuan, H.L., Liu, X.H.: Inclusion of quinestrol and 2, 6-di-O-methyl-β-cyclodextrin: preparation, characterization, and inclusion mode. Carbohydr. Polym. 93(2), 753–760 (2013)Google Scholar
  79. 79.
    Sunder, A.: Controlled polymerization of glycidol for the synthesis of hyperbranched polyglycerols and polyether polyols with variable molecular architectures (Doctoral dissertation, Dissertation, Albert-Ludwigs-Universitat Freiburg) (2000)Google Scholar
  80. 80.
    Seiler, M.: Hyperbranched polymers: phase behavior and new applications in the field of chemical engineering. Fluid Phase Equilib. 241(1), 155–174 (2006)Google Scholar
  81. 81.
    Swaminathan, S., Vavia, P.R., Trotta, F., Torne, S.: Formulation of betacyclodextrin based nanosponges of itraconazole. J. Incl. Phenom. Macrocycl. Chem. 57(1–4), 89–94 (2007)Google Scholar
  82. 82.
    Sapino, S., Carlotti, M.E., Cavalli, R., Ugazio, E., Berlier, G., Gastaldi, L., Morel, S.: Photochemical and antioxidant properties of gamma-oryzanol in beta-cyclodextrin-based nanosponges. J. Incl. Phenom. Macrocycl. Chem. 75(1–2), 69–76 (2013)Google Scholar
  83. 83.
    Coats, A.W., Redfern, J.P.: Thermogravimetric analysis. A review. Analyst. 88(1053), 906–924 (1963)Google Scholar
  84. 84.
    Massaro, M., Cinà, V., Labbozzetta, M., Lazzara, G., Meo, P.L., Poma, P., Riela, S., Noto, R.: Chemical and pharmaceutical evaluation of the relationship between triazole linkers and pore size on cyclodextrin–calixarene nanosponges used as carriers for natural drugs. RSC Adv. 6(56), 50858–50866 (2016)Google Scholar
  85. 85.
    Bunaciu, A.A., Udriştioiu, E.G., Aboul-Enein, H.Y.: X-ray diffraction: instrumentation and applications. Crit. Rev. Anal. Chem. 45(4), 289–299 (2015)Google Scholar
  86. 86.
    Luykx, D.M., Peters, R.J., van Ruth, S.M., Bouwmeester, H.: A review of analytical methods for the identification and characterization of nano delivery systems in food. J. Agric. Food Chem. 56(18), 8231–8247 (2008)Google Scholar
  87. 87.
    Fraunhofer, W., Winter, G.: The use of asymmetrical flow field-flow fractionation in pharmaceutics and biopharmaceutics. Eur. J. Pharmacol. Biopharmacol. 58(2), 369–383 (2004)Google Scholar
  88. 88.
    Maestrelli, F., Cecchi, M., Cirri, M., Capasso, G., Mennini, N., Mura, P.: Comparative study of oxaprozin complexation with natural and chemically-modified cyclodextrins in solution and in the solid state. J. Incl. Phenom. Macrocycl. Chem. 63(1–2), 17–25 (2009)Google Scholar
  89. 89.
    Alongi, J., Poskovic, M., Frache, A., Trotta, F.: Role of β-cyclodextrin nanosponges in polypropylene photooxidation. Carbohydr. Polym. 86(1), 127–135 (2011)Google Scholar
  90. 90.
    Williams, D.B., Carter, C.B.: Transmission Electron Microscopy, A Textbook for Materials Science. Plenum Press, New York (1996)Google Scholar
  91. 91.
    Wang, Z.L.: Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J. Phys. Chem. B. 104, 1153–1175 (2000)Google Scholar
  92. 92.
    Aldawsari, H.M., Badr-Eldin, S.M., Labib, G.S., El-Kamel, A.H.: Design and formulation of a topical hydrogel integrating lemongrass-loaded nanosponges with an enhanced antifungal effect: in vitro/in vivo evaluation. Int. J. Nanomed. 10, 893 (2015)Google Scholar
  93. 93.
    Astafan, A., Benghalem, M.A., Pouilloux, Y., Patarin, J., Bats, N., Bouchy, C., Daou, T.J., Pinard, L.: Particular properties of the coke formed on nanosponge BEA zeolite during ethanol-to-hydrocarbons transformation. J. Catal. 336, 1–10 (2016)Google Scholar
  94. 94.
    Ruozi, B., Tosi, G., Forni, F., Fresta, M., Vandelli, M.A.: Atomic force microscopy and photon correlation spectroscopy: two techniques for rapid characterization of liposomes. Eur. J. Pharm. Sci. 25(1), 81–89 (2005)Google Scholar
  95. 95.
    Edwards, K.A., Baeumner, A.J.: Analysis of liposomes. Talanta 68(5), 1432–1441 (2006)Google Scholar
  96. 96.
    Jonkman, J., Brown, C.M.: Any way you slice it-a comparison of confocal microscopy techniques. J. Biomol. Tech. 26(2), 54 (2015)Google Scholar
  97. 97.
    Hagen, N., Gao, L., Tkaczyk, T.S.: Quantitative sectioning and noise analysis for structured illumination microscopy. Opt. Express 20(1), 403–413 (2012)Google Scholar
  98. 98.
    Lippincott-Schwartz, J., Altan-Bonnet, N., Patterson, G.H.: Photobleaching and photoactivation: following protein dynamics in living cells. Nat. Cell Biol. 5, S7–S14 (2003)Google Scholar
  99. 99.
    Patterson, G.H.: Photoactivation and imaging of photoactivatable fluorescent proteins. Protoc. Cell Biol. Curr. (2008). Google Scholar
  100. 100.
    Gigliotti, C.L., Minelli, R., Cavalli, R., Occhipinti, S., Barrera, G., Pizzimenti, S., Cappellano, G., Boggio, E., Conti, L., Fantozzi, R., Giovarelli, M.: In vitro and in vivo therapeutic evaluation of camptothecin-encapsulated β-cyclodextrin nanosponges in prostate cancer. J. Biomed. Nanotechnol. 12(1), 114–127 (2016)Google Scholar
  101. 101.
    Kutscher, H.L., Chao, P., Deshmukh, M., Rajan, S.S., Singh, Y., Hu, P., Joseph, L.B., Stein, S., Laskin, D.L., Sinko, P.J.: Enhanced passive pulmonary targeting and retention of PEGylated rigid microparticles in rats. Int. J. Pharm. 402(1), 64–71 (2010)Google Scholar
  102. 102.
    Jabr-Milane, L.S., van Vlerken, L.E., Yadav, S., Amiji, M.M.: Multi-functional nanocarriers to overcome tumor drug resistance. Cancer Treat. Rev. 34(7), 592–602 (2008)Google Scholar
  103. 103.
    Huynh, N.T., Passirani, C., Saulnier, P., Benoit, J.P.: Lipid nanocapsules: a new platform for nanomedicine. Int. J. Pharm. 379(2), 201–209 (2009)Google Scholar
  104. 104.
    Radomska-Soukharev, A.: Stability of lipid excipients in solid lipid nanoparticles. Adv. Drug Deliv. Rev. 59(6), 411–418 (2007)Google Scholar
  105. 105.
    Kedar, U., Phutane, P., Shidhaye, S., Kadam, V.: Advances in polymeric micelles for drug delivery and tumor targeting. Nanomed. Nanotech. Biol. Med. 6(6), 714–729 (2010)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Pharmaceutical SciencesGuru Jambheshwar University of Science and TechnologyHisarIndia

Personalised recommendations