Covalently anchored chlorosulfonyl-calix[4]arene onto silica gel as an efficient and reusable heterogeneous system for reduction of ketones using NaBH4

  • Ashkan Bagheri Chenari
  • Mandana Saber-TehraniEmail author
  • Manouchehr Mamaghani
  • Mohammad Nikpassand
Original Article


The catalytic activities of chlorosulfonyl-calix[4]arene-bonded silica gel (CSC[4]A-SG) as a novel heterogeneous catalyst was illustrated by efficient reduction of various ketones to their corresponding alcohols. To illustrate the promoting effect of the catalyst in the reaction, two more series of parallel experiments were also carried out using bare silica gel and no catalyst. The study suggests that this newly synthesized solid catalyst has high binding tendency toward sodium cations through ion- pair interactions and is consequently effective for the reduction of ketones to alcohols using NaBH4 as a hydrogen donor. Also to demonstrate the high affinity and strong trap capacity of CSC[4]A-SG toward sodium cation, atomic absorption spectrometric measurements were performed. As a result, quantitative reduction of ketones was observed in short time periods, while the catalyst shows high thermal stability (up to 300 °C) and can be recovered and reused for at least five times in a row without loss of its catalytic performance. This is the first report about the application of CSC[4]A-SG as a catalyst in the chemical reactions.


Chlorosulfonyl-Calix[4]arene-bonded silica gel Ketone reduction Sodium borohydride Heterogeneous catalytic system 



The authors highly acknowledge the IAU, North Tehran Branch for financial supporting of this project. Also they are very grateful to Professor Saeed Taghvaei-Ganjali for his continuous and appreciable comments and supports of this research.


  1. 1.
    Ertl, G., Knözinger, H., Weitkamp, J.: Handbook of heterogeneous catalysis. Wiley-VCH, Weinheim (1997)CrossRefGoogle Scholar
  2. 2.
    Sheldon, R.A., Downing, R.S.: Heterogeneous catalytic transformations for environmentally friendly production. Appl. Catal. A 189, 163–183 (1999)CrossRefGoogle Scholar
  3. 3.
    Lucarelli, C., Vaccari, A.: Examples of heterogeneous catalytic processes for fine chemistry. Green Chem. 13, 1941–1949 (2011)CrossRefGoogle Scholar
  4. 4.
    Hashmi, A., Stephen, K., Toste, F.D.: Modern gold catalyzed synthesis. John Wiley-VCH, Weinheim (2012)CrossRefGoogle Scholar
  5. 5.
    Gutsche, C.D.: Calixarenes: an introduction. Royal Society of Chemistry, Tucson (2008)Google Scholar
  6. 6.
    Shinkai, S.: Calixarenes-the third generation of supramolecules. Tetrahedron 49, 8933–8968 (1993)CrossRefGoogle Scholar
  7. 7.
    Sgarlata, C., Zito, V., Arena, G., Consoli, G.M.L., Galante, E., Geraci, C.: A sinapic acid–calix[4]arene hybrid selectively binds Pb2+ over Hg2+ and Cd2+. Polyhedron 28, 343–348 (2009)CrossRefGoogle Scholar
  8. 8.
    Huang, H., Zhao, C., Ji, Y., Nie, R., Zhou, P., Zhang, H.: Preparation, characterization and application of p-tert-butyl-calix [4] arene-SBA-15 mesoporous silica molecular sieves. J. Hazard. Mater. 178, 680–685 (2010)CrossRefGoogle Scholar
  9. 9.
    Tabakchi, M.: Immobilization of calix[4]arene bearing carboxylic acid and amid groups on aminopropyl silica gel and its sorption properties for Cr(VI). J. Incl. Phenom. Macrocycl. Chem. 61, 53–60 (2008)CrossRefGoogle Scholar
  10. 10.
    Gutsche, C.D.: Calixarenes revisited, monografs in supramolecular chemistry. Royal Society of Chemistry, Cambridge (1998)Google Scholar
  11. 11.
    Asfari, Z., Böhmer, V., Harrowfield, J., Vicens, J.: Calixarenes 2001. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  12. 12.
    Bozkurt, S., Kocabas, E., Durmaz, M., Yilmaz, M., Sirit, A.: Synthesis and dichromate anion sorption of silica gel-immobilized calix [4] arenes. J. Hazard. Mater. 165, 974–979 (2009)CrossRefGoogle Scholar
  13. 13.
    Arnaud-Neu, F., Barrett, G., Harris, S.J., Owens, M., McKervey, M.A., Schwing-Weill, M.J., Schwinte, P.: Cation complexation by chemically modified calixarenes. 5. Protonation constants for calixarene carboxylates and stability constants of their alkali and alkaline-earth complexes. Inorg. Chem. 32, 2644–2650 (1993)CrossRefGoogle Scholar
  14. 14.
    Ghidini, E., Ugozzoli, F., Ungaro, R., Harkema, S., Abu El-Fadl, A., Reinhoudt, D.N.: Complexation of alkali metal cations by conformationally rigid, stereoisomeric calix [4] arene crown ethers: a quantitative evaluation of preorganization. J. Am. Chem. Soc. 112, 6979–6985 (1990)CrossRefGoogle Scholar
  15. 15.
    Shinkai, S., Otsuka, T., Fujimoto, K., Matsuda, T.: Metal selectivity of conformational isomers derived from p-t-Butylcalix [4] arene. Chem. Lett. 19, 835–838 (1990)CrossRefGoogle Scholar
  16. 16.
    ávan Duynhoven, J.P.: Cavity effect of calix [4] arenes in electrophilic aromatic substitution reactions. Chem. Commun. 13, 1517–1518 (1996)Google Scholar
  17. 17.
    Katz, A., Da Costa, P., Lam., A.C.P., Notestein, J.M.: The first single-step immobilization of a calix-[4]-arene onto the surface of silica. Chem. Mater. 14, 3364 (2002)CrossRefGoogle Scholar
  18. 18.
    Ludwig, R.: Calixarenes in analytical and separation chemistry. Fresenius’ J. Anal. Chem. 367, 103–128 (2000)CrossRefGoogle Scholar
  19. 19.
    Katz, A., Da Costa, P., Lam, A.C.P., Notestein, J.M.: The first single-step immobilization of a calix-[4]-arene onto the surface of silica. Chem. Mater. 14, 3364–3368 (2002)CrossRefGoogle Scholar
  20. 20.
    Tabakci, M.: Immobilization of calix [6] arene bearing carboxylic acid and amide groups on aminopropyl silica gel and its sorption properties for Cr (VI). J. Incl. Phenom. Macrocyl. Chem. 61, 53–60 (2008)CrossRefGoogle Scholar
  21. 21.
    Gübbük, I.H., Hatay, I., Coşkun, A., Ersöz, M.: Immobilization of oxime derivative on silica gel for the preparation of new adsorbent. J. Hazard. Materi. 172, 1532–1537 (2009)CrossRefGoogle Scholar
  22. 22.
    Arena, G., Casnati, A., Contino, A., Mirone, L., Sciotto, D., Ungaro, R.: Synthesis of new calixcrowns and their anchoring to silica gel for the selective separation of Cs+ and K+. Chem. Commun. 19, 2277–2278 (1996)CrossRefGoogle Scholar
  23. 23.
    Ohto, K., Tanaka, Y., Inoue, K.: Adsorptive separation of lead and zinc ions by novel type of calix [4] arene carboxylate resin immobilized with polyallylamine. Chem. Lett. 26, 647–648 (1997)CrossRefGoogle Scholar
  24. 24.
    Xiao, X.Z., Feng, Y.Q., Da, S.L., Zhang, Y.: Preparation and evaluation of p-tert-butyl-calix [8] arene-bonded silica stationary phase for high performance liquid chromatography. Anal. Lett. 33, 3355–3372 (2000)CrossRefGoogle Scholar
  25. 25.
    Sokoließ, T., Menyes, U., Roth, U., Jira, T.: Separation of cis-and trans-isomers of thioxanthene and dibenz [b, e] oxepin derivatives on calixarene-and resorcinarene-bonded high-performance liquid chromatography stationary phases. J. Chromatogr. A 948, 309–319 (2002)CrossRefGoogle Scholar
  26. 26.
    Sokoließ, T., Schönherr, J., Menyes, U., Roth, U., Jira, T.: Characterization of calixarene-and resorcinarene-bonded stationary phases: I. Hydrophobic interactions. J. Chromatogr. A 1021, 71–82 (2003)CrossRefGoogle Scholar
  27. 27.
    Li, L.S., Liu, M., Da, S.L., Feng, Y.Q.: Studies on the chromatographic behavior of nucleosides and bases on p-tert-butyl-calix [8] arene-bonded silica gel stationary phase by HPLC. Talanta 63, 433–441 (2004)CrossRefGoogle Scholar
  28. 28.
    Li, L.S., Da, S.L., Feng, Y.Q., Liu, M.: Preparation and characterization of a p-tert-butyl-calix [6]-1, 4-benzocrown-4-bonded silica gel stationary phase for liquid chromatography. J. Chromatogr. A 1040, 53–61 (2004)CrossRefGoogle Scholar
  29. 29.
    Śliwka-Kaszyńska, M., Jaszczołt, K., Witt, D., Rachoń, J.: High-performance liquid chromatography of di-and trisubstituted aromatic positional isomers on 1, 3-alternate 25, 27-dipropoxy-26, 28-bis-[3-propyloxy]-calix [4] arene-bonded silica gel stationary phase. J. Chromatogr. A 1055, 21–28 (2004)CrossRefGoogle Scholar
  30. 30.
    Liu, M., Li, L.S., Da, S.L., Feng, Y.Q.: High performance liquid chromatography with cyclodextrin and calixarene macrocycle bonded silica stationary phases for separation of steroids. Talanta 66, 479–486 (2005)CrossRefGoogle Scholar
  31. 31.
    Śliwka-Kaszyńska, M., Jaszczołt, K., Hoczyk, A., Rachoń, J.: Preparation and evaluation of 1, 3-alternate 25, 27-dibenzyloxy-26, 28-bis-[3-propyloxy]-calix [4] arene-bonded silica stationary phase for high performance liquid chromatography. Chemia analityczna 51, 123–133 (2006)Google Scholar
  32. 32.
    Śliwka-Kaszyńska, M., Jaszczołt, K., Kołodziejczyk, A., Rachoń, J.: 1, 3-Alternate 25, 27-dibenzoiloxy-26, 28-bis-[3-propyloxy]-calix [4] arene-bonded silica gel as a new type of HPLC stationary phase. Talanta 68, 1560–1566 (2006)CrossRefGoogle Scholar
  33. 33.
    Huai, Q.Y., Zuo, Y.M.: Study of the retention characteristics of calix [4] arene-bonded silica stationary phase and comparison with common phases for HPLC using linear solvation energy relationships. J. Liq. Chromatogr. Relat. Technol. 29, 801–814 (2006)CrossRefGoogle Scholar
  34. 34.
    Nabok, A.V., Hassan, A.K., Ray, A.K., Omar, O., Kalchenko, V.I.: Study of adsorption of some organic molecules in calix [4] resorcinolarene LB films by surface plasmon resonance. Sens. Actuator B 45, 115–121 (1997)CrossRefGoogle Scholar
  35. 35.
    Yang, X., Johnson, S., Shi, J., Holesinger, T., Swanson, B.: Polyelectrolyte and molecular host ion self-assembly to multilayer thin films: an approach to thin film chemical sensors. Sens. Actuator B 45, 87–92 (1997)CrossRefGoogle Scholar
  36. 36.
    Hayashida, O., Shimizu, C., Fujimoto, T., Aoyama, Y.: Surface plasmon resonance study on the interaction of immobilized macrocyclic sugar clusters with lectins and water-soluble polymers. Chem. Lett. 27, 13–14 (1998)CrossRefGoogle Scholar
  37. 37.
    Hassan, A.K., Ray, A.K., Nabok, A.V., Davis, F.: Spun films of novel calix [4] resorcinarene derivatives for benzene vapour sensing. Sens. Actuator B 77, 638–641 (2001) (2001)CrossRefGoogle Scholar
  38. 38.
    Khalil, K.M., Elsamahy, A.A., Elanany, M.S.: Formation and characterization of high surface area thermally stabilized titania/silica composite materials via hydrolysis of titanium (IV) tetra-isopropoxide in sols of spherical silica particles. J. Colloid Interface Sci. 249, 359–365 (2002)CrossRefGoogle Scholar
  39. 39.
    Kamboh, M.A., Solangi, I.B., Sherazi, S.T.H., Memon, S.: A highly efficient calix [4] arene based resin for the removal of azo dyes. Desalination 268, 83–89 (2011)CrossRefGoogle Scholar
  40. 40.
    Gao, B., He, S., Guo, J., Wang, R.: Preparation and antibacterial character of a water-insoluble antibacterial material of grafting polyvinylpyridinium on silica gel. Mater. Lett. 61, 877–883 (2007)CrossRefGoogle Scholar
  41. 41.
    Tabakci, M., Yilmaz, M.: Sorption characteristics of Cu (II) ions onto silica gel-immobilized calix [4] arene polymer in aqueous solutions: batch and column studies. J. Hazard. Mater. 151, 331–338 (2008)CrossRefGoogle Scholar
  42. 42.
    Yilmaz, M., Memon, S., Tabakci, M., Bartsch, R.A.: New frontiers in polymer research. Nova Science Publishers, New York (2006)Google Scholar
  43. 43.
    Memon, S., Yilmaz, M.: Synthesis and complexation studies of 1, 3-dialkylated p-tert-butylcalix [4] arene telomers. React. Funct. Polym. 44, 227–233 (2000)CrossRefGoogle Scholar
  44. 44.
    Taghvaei-Ganjali, S., Zadmard, R., Saber-Tehrani, M.: Immobilization of chlorosulfonyl-calix [4] arene onto the surface of silica gel through the directly estrification. Appl. Surf. Sci. 258, 5925–5932 (2012)CrossRefGoogle Scholar
  45. 45.
    Servati, Z., Saber-Tehrani, M., Taghvaei-Ganjali, S., Zadmard, R.: Silica bonded calix [4] arene as an efficient, selective and reusable sorbent for rubber chemical additives. J. Porous Mater. 25, 1463–1474 (2018)CrossRefGoogle Scholar
  46. 46.
    Ruiz, J.R., Jiménez-Sanchidrián, C., Hidalgo, J.M., Marinas, J.M.: Reduction of ketones and aldehydes to alcohols with magnesium–aluminium mixed oxide and 2-propanol. J. Mol. Catal. A 246, 190–194 (2006) (2006)CrossRefGoogle Scholar
  47. 47.
    Hongbing, J.I., Huang, Y., Yu, Q., Tingting, W., Zhang, M.: Ni-mediated liquid phase reduction of carbonyl compounds in the presence of atmospheric hydrogen. Chin. J. Chem. Eng. 14, 118–121 (2006)CrossRefGoogle Scholar
  48. 48.
    Rahman, A., Jonnalagadda, S.B.: Rapid and selective reduction of adehydes, ketones, phenol, and alkenes with Ni–boride–silica catalysts system at low temperature. J. Mol. Catal. A 299, 98–101 (2009)CrossRefGoogle Scholar
  49. 49.
    Cook, P.L.: The reduction of aldehydes and ketones with nickel—aluminum alloy in aqueous alkaline solution1. J. Org. Chem. 27, 3873–3875 (1962)CrossRefGoogle Scholar
  50. 50.
    Yakabe, S., Hirano, M., Morimoto, T.: Alumina-assisted reduction of carbonyl compounds with sodium borohydride in hexane. Can. J. chem. 76, 1916–1921 (1998)CrossRefGoogle Scholar
  51. 51.
    Zhang, Y., Liao, S., Xu, Y., Yu, D.: Catalytic selective hydrogenation of cinnamaldehyde to hydrocinnamaldehyde. Appl. Catal. A 192, 247–251 (2000)CrossRefGoogle Scholar
  52. 52.
    Choudary, B.M., Kantam, M.L., Rahman, A., Reddy, C.R.V.: Selective reduction of aldehydes to alcohols by calcined Ni–Al hydrotalcite. J. Mol. Catal. A 206, 145–151 (2003)CrossRefGoogle Scholar
  53. 53.
    Vayner, G., Houk, K.N., Sun, Y.K.: Origins of enantioselectivity in reductions of ketones on cinchona alkaloid modified platinum. J. Am. Chem. Soc. 126, 199–203 (2004)CrossRefGoogle Scholar
  54. 54.
    Hu, A., Ngo, H.L., Lin, W.: Chiral porous hybrid solids for practical heterogeneous asymmetric hydrogenation of aromatic ketones. J. Am. Chem. Soc. 125, 11490–11491 (2003)CrossRefGoogle Scholar
  55. 55.
    Maillet, C., Janvier, P., Bertrand, M.J., Praveen, T., Bujoli, B.: (2002) Phosphonate-based hybrid materials for catalysis? Supported rhodium/2, 2′-bipyridine complexes as reduction catalysts under hydrogen pressure. Eur. J. Org. Chem. 1685–1689 (2002)Google Scholar
  56. 56.
    Milone, C., Ingoglia, R., Tropeano, M.L., Neri, G., Galvagno, S.: First example of selective hydrogenation of unconstrained α, β-unsaturated ketone to α, β-unsaturated alcohol by molecular hydrogen. Chem. Commun. 7, 868–869 (2003)CrossRefGoogle Scholar
  57. 57.
    De Bruyn, M., Coman, S., Bota, R., Parvulescu, V.I., De Vos, D.E., Jacobs, P.A.: Chemoselective reduction of complex α, β-unsaturated ketones to allylic alcohols over Ir-Metal particles on β zeolites. Angew. Chem. 115, 5491–5494 (2003)CrossRefGoogle Scholar
  58. 58.
    Selvam, P., Sonavane, S.U., Mohapatra, S.K., Jayaram, R.V.: Chemoselective reduction of α, β-unsaturated carbonyls over novel mesoporous CoHMA molecular sieves under hydrogen transfer conditions. Adv. Synth. Catal. 346, 542–544 (2004)CrossRefGoogle Scholar
  59. 59.
    Johnstone, R.A., Wilby, A.H., Entwistle, I.D.: Heterogeneous catalytic transfer hydrogenation and its relation to other methods for reduction of organic compounds. Chem. Rev. 85, 129–170 (1985)CrossRefGoogle Scholar
  60. 60.
    Cho, B.T., Kang, S.K., Kim, M.S., Ryu, S.R., An, D.K.: Solvent-free reduction of aldehydes and ketones using solid acid-activated sodium borohydride. Tetrahedron 62, 8164–8168 (2006)CrossRefGoogle Scholar
  61. 61.
    Kimura, K., Miura, T., Matsuo, M., Shono, T.: Polymeric membrane sodium-selective electrodes based on lipophilic calix [4] arene derivatives. Anal. Chem. 62, 1510–1513 (1990)CrossRefGoogle Scholar
  62. 62.
    Kivlehan, F., Mace, W.J., Moynihan, H.A., Arrigan, D.W.: Potentiometric evaluation of calix [4] arene anion receptors in membrane electrodes: phosphate detection. Anal. Chim. Acta 585, 154–160 (2007)CrossRefGoogle Scholar
  63. 63.
    Buie, N.M., Talanov, V.S., Butcher, R.J., Talanova, G.G.: New fluorogenic dansyl-containing calix [4] arene in the partial cone conformation for highly sensitive and selective recognition of lead (II). Inorg. Chem. 47, 3549–3558 (2008)CrossRefGoogle Scholar
  64. 64.
    Coquière, D., Cadeau, H., Rondelez, Y., Giorgi, M., Reinaud, O.: Ipso-chlorosulfonylation of calixarenes: A powerful tool for the selective functionalization of the large rim. J. Org. Chem. 71, 4059–4065 (2006)CrossRefGoogle Scholar
  65. 65.
    O’Connor, K.M., Arrigan, D.W., Svehla, G.: Calixarenes in electroanalysis. Electroanalysis 7, 205–215 (1995)CrossRefGoogle Scholar
  66. 66.
    Tikhomirova, T.I., Fadeeva, V.I., Kudryavtsev, G.V., Nesterenko, P.N., Ivanov, V.M., Savitchev, A.T., Smirnova, N.S.: Sorption of noble-metal ions on silica with chemically bonded nitrogen-containing ligands. Talanta 38, 267–274 (1991)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Ashkan Bagheri Chenari
    • 1
  • Mandana Saber-Tehrani
    • 2
    Email author
  • Manouchehr Mamaghani
    • 3
  • Mohammad Nikpassand
    • 1
  1. 1.Chemistry DepartmentIslamic Azad University, Rasht BranchRashtIran
  2. 2.Chemistry DepartmentIslamic Azad University, North Tehran BranchTehranIran
  3. 3.Department of Chemistry, Faculty of SciencesUniversity of GuilanRashtIran

Personalised recommendations