Advertisement

Characterization and enhanced antioxidant activity of the inclusion complexes of baicalin with p-sulfonatocalix[n]arenes

  • Jianbin ChaoEmail author
  • Xiaolu Wang
  • Miao Xu
  • Ying Zuo
Original Article
  • 37 Downloads

Abstract

Baicalin, one of the main active constituents of the isolated root of Scutellaria baicalensis. It has many health-promoting properties. However, it is easy to be oxidized that impedes its application in the practical life. In this study, the inclusion complexes of baicalin with p-sulfonatocalix[n]arenes were studied by fluorescence spectroscopy, ultraviolet–visible spectroscopy (UV–vis), fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, and atomic force microscopy. The results showed that baicalin was able to form inclusion complexes with p-sulfonatocalix[n]arenes in a molar ratio of 1:1 and the association constants (K) were different at different pH. Meanwhile, the antioxidant ability and stability experiments of baicalin and the inclusion complexes were done. The experimental results indicated that both the stability and the antioxidant activity of baicalin significantly increased by the formation of inclusion complexes with p-sulfonatocalix[n]arenes.

Keywords

Baicalin p-Sulfonatocalix[n]arenes Antioxidant activity Stability 

Notes

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Nos. 21472118, 21672131), the Program for the Top Young and Middle-aged Innovative Talents of Higher Learning Institutions of Shanxi (No. 2013802), Talents Support Program of Shanxi Province (No. 2014401), Shanxi Province Outstanding Youth Fund (No. 2014021002).

Supplementary material

10847_2019_887_MOESM1_ESM.pdf (2.6 mb)
Supplementary material 1 (PDF 2658 KB)

References

  1. 1.
    Zhu, H., Wang, Z., Xing, Y., Gao, Y., Ma, T., Lou, L., Lou, J., Gao, Y., Wang, S., Wang, Y.: Baicalin reduces the permeability of the blood–brain barrier during hypoxia in vitro by increasing the expression of tight junction proteins in brain microvascular endothelial cells. J. Ethnopharmacol. 141, 714–720 (2012)CrossRefGoogle Scholar
  2. 2.
    Kimuya, Y., Kubo, M., Tain, T., Arichi, S., Okuda, H.: Studies on scutellariae radix. IV. Effects on lipid peroxidation in rat liver. Chem. Pharm. Bull. 29, 2610–2617 (1981)CrossRefGoogle Scholar
  3. 3.
    Chang, H.H., Yi, P.L., Cheng, C.H., Lu, C.Y., Hsiao, Y.T., Tsai, Y.F., Li, C.L., Chang, F.C.: Biphasic effects of baicalin, an active constituent of scutellaria baicalensis georgi, in the spontaneous sleep-wake regulation. J. Ethnopharmacol. 135, 359–368 (2011)CrossRefGoogle Scholar
  4. 4.
    Wu, J.A., Attele, A.S., Zhang, L., Yuan, C.S.: Anti-HIV activity of medicinal herbs: usage and potential development. Am. J. Chin. Med. 29, 69–81 (2001)CrossRefGoogle Scholar
  5. 5.
    Li, B.Q., Fu, T., Yao, D.Y., Mikovits, J.A., Ruscetti, F.W., Wang, J.M.: Flavonoid baicalin inhibits HIV-1 infection at the level of viral entry. Biochem. Biophys. Res. Co. 276, 534–538 (2000)CrossRefGoogle Scholar
  6. 6.
    Shen, Y.C., Chiou, W.F., Chou, Y.C., Chen, C.F.: Mechanisms in mediating the anti-inflammatory effects of baicalin and baicalein in human leukocytes. Eur. J. Pharmacol. 465, 171–181 (2003)CrossRefGoogle Scholar
  7. 7.
    Guo, M.Y., Zhang, N.S., Li, D.P., Liang, D.J., Liu, Z.C., Li, F.Y., Fu, Y.H., Cao, Y.G., Deng, X.M., Yang, Z.T.: Baicalin plays an anti-inflammatory role through reducing nuclear factor-κB and p38 phosphorylation in s. aureus-induced mastitis. Int. Immunopharmacol. 16, 125–130 (2013)CrossRefGoogle Scholar
  8. 8.
    Li, B.Q., Fu, T., Gong, W.H., Dunlop, N., Kung, H., Yan, Y., Kang, J., Wang, J.M.: The flavonoid baicalin exhibits anti-inflammatory activity by binding to chemokines. Immunopharmacology. 49, 295–306 (2000)CrossRefGoogle Scholar
  9. 9.
    Ikemoto, S., Sugimura, K., Yoshida, N., Yasumoto, R., Wada, S., Yamamoto, K., Kishimoto, T.: Antitumor effects of scutellariae radix and its components baicalein, baicalin, and wogonin on bladder cancer cell lines. Urology. 55, 951–955 (2000)CrossRefGoogle Scholar
  10. 10.
    Motoo, Y., Sawabu, N.: Antitumor effects of saikosaponins, baicalin and baicalein on human hepatoma cell lines. Cancer Lett. 86, 91–95 (1994)CrossRefGoogle Scholar
  11. 11.
    Zheng, Y.C., Shen, D.D., Ren, M., Liu, X.Q., Wang, Z.R., Liu, Y., Zhang, Q.N., Zhao, L.J., Zhao, L.J., Ma, J.L., Yu, B., Liu, H.M.: Baicalin, a natural LSD1 inhibitor. Bioorg. Chem. 69, 129–131 (2016)CrossRefGoogle Scholar
  12. 12.
    Zhang, D.Y., Wu, J., Ye, F., Xue, L., Jiang, S., Yi, J., Zhang, W., Wei, H.C., Sung, M., Wang, W., Li, X.: Inhibition of cancer cell proliferation and prostaglandin E2 synthesis by scutellaria baicalensis. Cancer Res. 63, 4037–4043 (2003)Google Scholar
  13. 13.
    Abranches, P.A.S., Varejão, E.V.V., da Silva, C.M., de Fátima, Â, Magalhães, T.F.F., da Silva, D.L., de Resende-Stoianoff, M.A., Reis, S., Nascimento, C.S. Jr., de Almeida, W.B., Figueiredo, I.M., Fernandes, S.A.: Complexes of luconazole with sodium p-sulfonatocalix [n] arenes: characterization, solubility and antifungal activity. RSC Adv. 5, 44317–44325 (2015)CrossRefGoogle Scholar
  14. 14.
    Shinkai, S.: Calixarenes-the third generation of supramolecules. Tetrahedron 49, 8933–8968 (1993)CrossRefGoogle Scholar
  15. 15.
    Böhmer, V.: Calixarenes, macrocycles with (almost) unlimited possibilities. Angew. Chem., Int. Ed. 34, 713–745 (1995)CrossRefGoogle Scholar
  16. 16.
    Ukhatskaya, E.V., Kurkov, S.V., Matthews, S.E., Loftsson, T.: Encapsulation of drug molecules into calix [n] arene nanobaskets, role of aminocalix [n] arenes in biopharmaceutical field. J. Pharm. Sci. 102, 3485–3512 (2013)CrossRefGoogle Scholar
  17. 17.
    Arduini, A., Pochini, A., Raverberi, S., Ungaro, R.: p-t-Butyl-calix [4] arene tetracarboxylic acid, a water soluble calixarene in a cone structure. J. Chem. Soc. Chem. Commun. 15, 981–982 (1984)CrossRefGoogle Scholar
  18. 18.
    Kalchenko, V.I., Visotsky, M.A., Shivanyuk, A.N., Pirozhenko, V.V., Markovsky, L.N.: Synthesis and binding properties of phosphorus-containing calixarenes and calixresorcinarenes. Phosphorus Sulfur Relat. Elem. 109, 513–516 (1997)CrossRefGoogle Scholar
  19. 19.
    Dalgarno, S.J., Atwood, J.L., Raston, C.L.: Sulfonatocalixarenes: molecular capsule and ‘russian doll’ arrays to structures mimicking viral geometry. Chem. Commun. 44, 4567–4574 (2006)CrossRefGoogle Scholar
  20. 20.
    Shahgaldian, P., Coleman, A.W., Kalchenko, V.I.: Synthesis and properties of novel amphiphilic calix-[4]-arene derivatives. Tetrahedron Lett. 42, 577–579 (2001)CrossRefGoogle Scholar
  21. 21.
    Chao, J.B., Zhang, Y., Fan, X.L., Wang, H.F., Li, Y.F.: Investigation of the inclusion interaction of p-sulfonatocalix [6] arene with triamterene. Spectrochim. Acta Part A 116, 295–300 (2013)CrossRefGoogle Scholar
  22. 22.
    Guo, D.S., Su, X., Liu, Y.: Benzyl effects of supramolecular architectures constructed by p-sulfonatocalix [4] arene and viologen guests: from simple 2: 1 complex to polymeric capsules. Cryst. Growth Des. 8, 3514–3517 (2008)CrossRefGoogle Scholar
  23. 23.
    Chao, J.B., Liu, Y.H., Zhang, Y., Wang, Y., Zhao, W., Zhang, B.T.: Survey on the complexation character of p-sulfonatocalix [n] arenes and caffeic acid. Spectrochim. Acta Part A 132, 152–159 (2014)CrossRefGoogle Scholar
  24. 24.
    Kalchenko, O.I., Perret, F., Morel-Desrosiers, N., Coleman, A.W.: A comparative study of the determination of the stability constants of inclusion complexes of p-sulfonatocalix [4] arene with amino acids by RP-HPLC and 1H NMR. J. Chem. Soc. Perkin Trans. 2, 258–263 (2001)CrossRefGoogle Scholar
  25. 25.
    Li, J.X., Zhang, M., Chao, J.B., Shuang, S.M.: Preparation and characterization of the inclusion complex of baicalin (BG) with β-CD and HP-β-CD in solution: an antioxidant ability study. Spectrochim. Acta Part A 73, 752–756 (2009)CrossRefGoogle Scholar
  26. 26.
    Guo, D.S., Liu, Y.: Supramolecular chemistry of p-sulfonatocalix [n] arenes and its biological applications. Acc. Chem. Res. 47, 1925–1934 (2014)CrossRefGoogle Scholar
  27. 27.
    Da, S.E., Shahgaldian, P., Coleman, A.W.: Haemolytic properties of some water-soluble para-sulphonato-calix-[n]-arenes. Int. J. Pharm. 273, 57–62 (2004)CrossRefGoogle Scholar
  28. 28.
    Coleman, A.W., Jebors, S., Cecillon, S., Perret, P., Garin, D., Marti-Battle, D., Moulin, M.: Toxicity and biodistribution of para-sulfonato-calix [4] arene in mice. New J. Chem. 32, 780–782 (2008)CrossRefGoogle Scholar
  29. 29.
    Guo, D.S., Wang, K., Liu, Y.: Selective binding behaviors of p-sulfonatocalixarenes in aqueous solution. J. Incl. Phenom. Macrocycl. Chem. 62, 1–21 (2008)CrossRefGoogle Scholar
  30. 30.
    Shinkai, S., Araki, K., Matsuda, T., Nishiyama, N., Ikeda, H., Takau, I., Iwamoto, M.: NMR and crystallographic studies of a p-sulfonatocalix [4] arene-guest complex. J. Am. Chem. Soc. 112, 9053–9058 (1990)CrossRefGoogle Scholar
  31. 31.
    Zhao, H.X., Guo, D.S., Liu, Y.: Binding behaviors of p-sulfonatocalix [4] arene with gemini guests. J. Phys. Chem. B 117, 1978–1987 (2013)CrossRefGoogle Scholar
  32. 32.
    Ando, T.: High-speed atomic force microscopy coming of age. Nanotechnology. 23, 062001 (2012)CrossRefGoogle Scholar
  33. 33.
    Xu, J.G., Hu, Q.P., Wang, X.D., Luo, J.Y., Liu, Y., Tian, C.R.: Changes in the main nutrients, phytochemicals, and antioxidant activity in yellow corn grain during maturation. J. Agric. Food Chem. 58, 5751–5756 (2010)CrossRefGoogle Scholar
  34. 34.
    Xu, J.G., Tian, C.R., Hu, Q.P., Luo, J.Y., Wang, X.D., Tian, X.D.: Dynamic changes in phenolic compounds and antioxidant activity in oats (Avena nuda L.) during steeping and germination. J. Agric. Food Chem. 57, 10392–10398 (2009)CrossRefGoogle Scholar
  35. 35.
    Cherry, B.R., Fujimoto, C.H., Cornelius, C.J., Alam, T.M.: Investigation of domain size in polymer membranes using double-quantum-filtered spin diffusion magic angle spinning NMR. Macromolecules 38, 1201–1206 (2015)CrossRefGoogle Scholar
  36. 36.
    Zhang, G.M., Gao, D.J., Chao, J.B., Shuang, S.M., Dong, C.: The interaction of CI. basic red 5 with complementary negatively chargedhosts: 4-sulfonatocalix [4] arene and carboxymethyl-β- cyclodextrin. Dyes Pigment. 82, 40–46 (2009)CrossRefGoogle Scholar
  37. 37.
    Liu, Y., Han, B.H., Chen, Y.T.: Molecular recognition and complexation thermodynamics of dye guest molecules by modified cyclodextrins and calixarenesulfonates. J. Phys. Chem. B 106, 4678–4687 (2002)CrossRefGoogle Scholar
  38. 38.
    Andrade-Dias, C., Goodfellow, B.J., Cunha-Silva, L., Teixeira-Dias, J.J.C.: Inclusion complexes of 2-phenoxyethanol and alkoxyethanols in cyclodextrins: an 1H NMR study. J. Incl. Phenom. Macrocycl. Chem. 57, 151–156 (2007)CrossRefGoogle Scholar
  39. 39.
    Ma, Y., Chi, X., Yan, X., Liu, J., Yao, Y., Chen, W., Huang, F., Hou, J.-L.: per-Hydroxylated pillar[6]arene: synthesis, X-ray crystal structure, and host-guest complexation. Org. Lett. 14, 1532–1535 (2012)CrossRefGoogle Scholar
  40. 40.
    Chao, J.B., Wang, H.J., Song, K.L., Wang, Y.Z., Zuo, Y., Zhang, L.W., Zhang, B.T.: Host-guest inclusion system of ferulic acid with p-sulfonatocalix [n] arenes: preparation, characterization and antioxidant activity. J. Mol. Struct. 1130, 579–584 (2017)CrossRefGoogle Scholar
  41. 41.
    Periasamy, R., Rajamohan, R., Kothainayaki, S., Sivakumar, K.: Spectral investigation and structural characterization of dibenzalacetone: β-cyclodextrin inclusion complex. J. Mol. Struct. 1068, 155–163 (2014)CrossRefGoogle Scholar
  42. 42.
    Wang, S.Q., Liu, S.M., Sun, Y.B., Jiang, D., Zhang, X.M.: Investigation of coal components of late permian different ranks bark coal using AFM and Micro-FTIR. Fuel 187, 51–57 (2017)CrossRefGoogle Scholar
  43. 43.
    Gadelmawla, E.S., Koura, M.M., Maksoud, T.M.A., Elewa, I.M., Soliman, H.H.: Roughness parameters. J. Mater. Process. Technol. 123, 133–145 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Jianbin Chao
    • 1
    Email author
  • Xiaolu Wang
    • 1
    • 2
  • Miao Xu
    • 1
    • 2
  • Ying Zuo
    • 3
  1. 1.Research Institute of Applied ChemistryShanxi UniversityTaiyuanChina
  2. 2.School of Chemistry and Chemical EngineeringShanxi UniversityTaiyuanChina
  3. 3.Scientific Instrument CenterShanxi UniversityTaiyuanChina

Personalised recommendations