Advertisement

Treating an old disease with new tricks: strategies based on host–guest chemistry for leishmaniasis therapy

  • Susana Santos BragaEmail author
Review Article
  • 17 Downloads

Abstract

This critical mini-review is focused on leishmaniasis, namely on the factors causing the re-emergence of the disease, the available therapies and their limitations. It then looks into the tools available within the field of host–guest chemistry and that are now arising as innovative solutions for the treatment of infections caused by different species of the Leishmania genus. These include the use of cyclodextrins as medicinal agents per se, as well as the formation of cyclodextrin inclusion complexes for the amelioration of biophysical properties and in vivo activities of leishmanicidal drugs. A focus is given on the practical utility of the results reported in the literature, evaluating their potencial of transition from the bench to the market.

Keywords

Inclusion complexes Cyclodextrins Cholesterol Leishmanicidal drugs 

Notes

Acknowledgements

Thanks are due to Fundação para a Ciência e a Tecnologia (FCT, Portugal), European Union, QREN, European Fund for Regional Development (FEDER), through the programme COMPETE, for general funding (project PEst C-QUI/UI0062/2019; FCOMP-01-0124-FEDER-037296).

References

  1. 1.
    World Health Organization (WHO): Leishmaniasis—situation and trends. Global Health Observatory (GHO) data, http://www.who.int/gho/neglected_diseases/leishmaniasis/en/ (2015). Accessed 11 Oct 2018
  2. 2.
    Tuon, F.F., Neto, V.A., Amato, V.S.: Leishmania: origin, evolution and future since the Precambrian. FEMS Immun. Med. Microb. 54, 158–166 (2008)CrossRefGoogle Scholar
  3. 3.
    Preston, D.: We became orphans, oh my sons! In: The Lost City of the Monkey God, pp. 289–302. London, Head of Zeus Ld (2017)Google Scholar
  4. 4.
    Rodrigues, I.A., Mazotto, A.M., Cardoso, V., Alves, R.L., Amaral, A.C.F., Silva, J.R.A., Pinheiro, A.S., Vermelho, A.B.: Natural products: insights into leishmaniasis inflammatory response. Mediat. Inflamm. (2015).  https://doi.org/10.1155/2015/835910 Google Scholar
  5. 5.
    Torres-Guerrero, E., Quintanilla-Cedillo, M.R., Ruiz-Esmenjaud, J.: Leishmaniasis: a review. F1000Research 6, 15 (2017)CrossRefGoogle Scholar
  6. 6.
    Steverding, D.: The history of leishmaniasis. BMC Parasit. Vect. 10, 82 (2017)CrossRefGoogle Scholar
  7. 7.
    Du, R., Hotez, P.J., Al-Salem, W.S., Acosta-Serrano, A.: Old World cutaneous leishmaniasis and refugee crisis in the Middle East and North Africa. Plos Negl. Trop. Dis. 10, e0004545 (2016)CrossRefGoogle Scholar
  8. 8.
    Saroufim, M., Charafeddine, K., Issa, G., Khalifeh, H., Habib, R.H., Berry, A., Ghosn, N., Rady, A., Khalifeh, I.: Ongoing epidemic of cutaneous leishmaniasis among Syrian refugees, Lebanon. Emerg. Infect. Dis. 20, 1712–1725 (2014)CrossRefGoogle Scholar
  9. 9.
    González, C., Wang, O., Strutz, S.E., González-Salazar, C., Sánchez-Cordero, V., Sarkar, S.: Climate change and risk of leishmaniasis in North America: predictions from ecological niche models of vector and reservoir species. PLoS Negl. Trop. Dis. 4, e585 (2010)CrossRefGoogle Scholar
  10. 10.
    Mansueto, P., Seidita, A., Vitale, G., Cascio, A.: Leishmaniasis in travellers: a literature review. Travel Med. Infect. Dis. 12, 563–581 (2014)CrossRefGoogle Scholar
  11. 11.
    Shaw, J.: The leishmaniases—survival and expansion in a changing world. A mini-review. Mem. Inst. Oswaldo Cruz. 102, 541–547 (2007)CrossRefGoogle Scholar
  12. 12.
    Martinson, E., Reinhard, K.J., Buikstra, J.E., de la Cruz, K.D.: Pathoecology of Chiribaya parasitism. Mem. Inst. Oswaldo Cruz 98(Suppl, I), 195–205 (2003)CrossRefGoogle Scholar
  13. 13.
    Global Health – Division of Parasitic Diseases: Parasites – Leishmaniasis. Resources for Health Professionals. Centers for Disease Control and Prevention. https://www.cdc.gov/parasites/leishmaniasis/health_professionals/index.html (2017). Accessed 15 Oct 2018
  14. 14.
    Markle, W.H., Makhoul, K.: Cutaneous leishmaniasis: recognition and treatment. Am. Fam. Physician 69, 1455–1460 (2004)Google Scholar
  15. 15.
    World Health Organization (WHO): Leishmaniasis key facts. WHO, http://www.who.int/news-room/fact-sheets/detail/leishmaniasis (2018). Accessed 16 Oct 2018
  16. 16.
    Kumar, R., Chauan, S.B., Ng, S.S., Sundar, S., Engwerda, C.R.: Immune checkpoint targets for host-directed therapy to prevent and treat leishmaniasis. Front. Immunol. 8, 1492 (2017)CrossRefGoogle Scholar
  17. 17.
    Romero, G.A.S., Costa, D.L., Costa, C.H.N., de Almeida, R.P., de Melo, E.V., de Carvalho, S.F.G., Rabello, A., de Carvalho, A.L., Sousa, A.Q., Leite, R.D., Lima, S.S., Amaral, T.A., Alves, F.P., Rode, J.: Collaborative LVBrasil group: efficacy and safety of available treatments for visceral leishmaniasis in Brazil: a multicenter, randomized, open label trial. Plos Negl. Trop. Dis. 11, e0005706 (2017)CrossRefGoogle Scholar
  18. 18.
    Saha, P., Ganguly, S., Chatterjee, M., Das, S.B., Kundu, P.K., Guha, S.K., Ghosh, T.K., Bera, D.K., Basu, N., Maji, A.K.: Asymptomatic leishmaniasis in kala-azar endemic areas of Malda district, West Bengal, India. PLoS Negl. Trop. Dis. 11, e0005391 (2017)CrossRefGoogle Scholar
  19. 19.
    Hendrixson, R.R., Mack, M.P., Palmer, R.A., Ottolenghi, A., Ghirardelli, R.G.: Oral toxicity of the cyclic polyethers—12-crown-4, 15-crown-5, and 18-crown-6—in mice. Tox. Appl. Pharmacol. 44, 263–268 (1978)CrossRefGoogle Scholar
  20. 20.
    Coleman, A.W., Jebors, S., Cecillon, S., Perret, P., Garin, D., Marti-Battle, D., Moulin, M.: Toxicity and biodistribution of para-sulphonato-calix[4]arene in mice. New J. Chem. 32, 780–782 (2008)CrossRefGoogle Scholar
  21. 21.
    Hwang, K.M., Qi, Y.M., Liu, S.Y., Lee, T.C., Choy, W., Chen, J.: Antithrombotic treatment with calix(n)arene compounds. Patent US 5409959 A; United States Genelabs Inc., 24 April 1995Google Scholar
  22. 22.
    Ukhatskaya, E.V., Kurkov, S.V., Hjálmarsdóttir, M.A., Karginovd, V.A., Matthews, S.E., Rodik, R.V., Kalchenko, V.I., Loftsson, T.: Cationic quaternized aminocalix[4]arenes: cytotoxicity, haemolytic and antibacterial activities. Int. J. Pharm. 458, 25–30 (2013)CrossRefGoogle Scholar
  23. 23.
    Uzunova, V.D., Cullinane, C., Brix, K., Nau, W.M., Day, A.I.: Toxicity of cucurbit[7]uril and cucurbit[8]uril: an exploratory in vitro and in vivo study. Org. Biomol. Chem. 8, 2037–2042 (2010)CrossRefGoogle Scholar
  24. 24.
    Villiers, A.: Sur la fermentation de la fécule par l’action du ferment butyrique. Compt. Rend. Acad. Sci. 112, 536–538 (1891)Google Scholar
  25. 25.
    Hashimoto, H.: Aplication of Cyclodextrins to Foods, Toiletries and Other Products in Japan. In: Huber, O., Szejtli, J. (eds) Advances in Inclusion Science, Vol. 5: Proceedings of the Fourth International Symposium on Cyclodextrins, pp 533–543. Kluwer Academic Publishers (1988)Google Scholar
  26. 26.
    World Health Organization: Safety evaluation of certain food additives (α cyclodextrin). 63rd meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). WHO Food Addit. Ser. 54, 3–15 (2006)Google Scholar
  27. 27.
    US Food and Drug Administration, Agency Response Letter Gras notice GRN No. 155, CFSAN (Center for Food Safety and Applied Nutrition)/Office of Food Additive Safety (2004)Google Scholar
  28. 28.
    Food Standards Australia and New Zealand, Final Assessment Report, Application A494. Alpha-cyclodextrin as a novel food (2004)Google Scholar
  29. 29.
    European Commission: 2008/413/EC: Commission Decision of 26 May 2008 authorising the placing on the market of alpha-cyclodextrin as a novel food ingredient under Regulation (EC) No 258/97 of the European Parliament and of the Council. Off. J. Eur. Union 51, 12–15 (2008)Google Scholar
  30. 30.
    US Food and Drug Administration: Gras notice GRN No. 74. https://www.accessdata.fda.gov/scripts/fdcc/?set=GRASNotices&id=74&sort=Substance&order=DESC&startrow=1&type=basic&search=418. (2001) Accessed 18 Oct 2018
  31. 31.
    World Health Organization: Safety evaluation of certain food additives (β-cyclodextrin). Joint FAO/WHO Expert Committee on Food Additives (JECFA). WHO Food Addit. Ser. 35, 257–268 (1996)Google Scholar
  32. 32.
    World Health Organization: Safety evaluation of certain food additives (γ-cyclodextrin). 53rd meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). WHO Food Addit. Ser. 44, 969 (2000)Google Scholar
  33. 33.
    US Food and Drug Administration, Agency Response Letter Gras notice GRN No. 46, CFSAN/Office of Food Additive Safety (2000). http://www.fda.gov/ucm/groups/fdagov-public/@fdagov-foods-gen /documents/document/ucm261675.pdf
  34. 34.
    Food Standards Australia and New Zealand, Final Assessment Report, Application A438: Gamma-cyclodextrin as a novel food (2003)Google Scholar
  35. 35.
    European Comission: 2012/288/EU: Commission Implementing Decision of 1 June 2012, authorising the placing on the market of Gamma-Cyclodextrin as a novel food ingredient under Regulation (EC) No 258/97 of the European Parliament and of the Council. Off. J. Eur. Comm. 55, 41–42 (2012)Google Scholar
  36. 36.
    Vidal Vademecum Spain: Aerodiol solucion para pulverizacion nasal 150 µg/dose (España). Vedemecum.es, https://www.vademecum.es/equivalencia-lista-aerodiol+solucion+para+pulverizacion+nasal+150+%B5g%2Fdose-espana-g03ca03-es_1 (2018). Accessed 17 Oct 2018
  37. 37.
    Servier Laboratories (Aust) Pty Ltd: Aerodiol(R). Consumer Medicine Information (2007). http://www.medicines.org.au/files/secaerod.pdf Accessed 17 Oct 2018
  38. 38.
    TabletTree: Aerodiol Nasal Spray. TablerWise, https://www.tabletwise.com/france/aerodiol-nasal-spray (2018). Accessed 17 Oct 2018
  39. 39.
    Denny, P.W., Goulding, D., Ferguson, M.A., Smith, D.F.: Sphingolipid free Leishmania are defective in membrane trafficking, differentiation and infectivity. Mol. Microbiol. 52, 313–327 (2004)CrossRefGoogle Scholar
  40. 40.
    Zufferey, R., Allen, S., Barron, T., Sullivan, D.R., Denny, P.W., Almeida, I.C., Smith, D.F., Turco, S.J., Ferguson, M.A., Beverley, S.M.: Ether phospholipids and glycosylinositolphospholipids are not required for amastigote virulence or for inhibition of macrophage activation by Leishmania major. J. Biol. Chem. 278, 44708–44718 (2003)CrossRefGoogle Scholar
  41. 41.
    Pucadyil, T.J., Chattopadhyay, A.: Cholesterol: a potential therapeutic target in Leishmania infection? Trends Parasitol. 23, 49–53 (2006)CrossRefGoogle Scholar
  42. 42.
    Ilangumaran, S., Hoessli, D.C.: Effects of cholesterol depletion by cyclodextrin on the sphingolipid microdomains of the plasma membrane. Biochem. J. 335(Pt 2), 433–440 (1998)CrossRefGoogle Scholar
  43. 43.
    Castagne, D., Fillet, M., Delattre, L., Evrard, B., Nusgens, B., Piel, B.: Study of the cholesterol extraction capacity of β-cyclodextrin and its derivatives, relationships with their effects on endothelial cell viability and on membrane models. J. Incl. Phenom. Macrocycl. Chem. 63, 225–231 (2009)CrossRefGoogle Scholar
  44. 44.
    Frijlink, H.W., Eissens, A.C., Hefting, N.R., Poelstra, K., Lerk, C.F., Meijer, D.K.: The effect of parenterally administered cyclodextrins on cholesterol levels in the rat. Pharm. Res. 8(1), 9–16 (1991)CrossRefGoogle Scholar
  45. 45.
    Pucadyil, T.J., Tewary, P., Madhubala, R., Chattopadhyay, A.: Cholesterol is required for Leishmania donovani infection: implications in leishmaniasis. Mol. Biochem. Parasitol. 133, 145–152 (2004)CrossRefGoogle Scholar
  46. 46.
    Rodríguez, N.E., Gaur, U., Wilson, M.E.: Role of caveolae in Leishmania chagasi phagocytosis and intracellular survival in macrophages. Cell. Microbiol. 8, 1106–1120 (2006)CrossRefGoogle Scholar
  47. 47.
    Chattopadhyay, A., Madhubala, R.: Method of treating leishmaniasis using methylbeta-cyclodextrin, Patent U.S. 20050227944 A1, Counsil of Scientific and Industrial Research, 31 May 2005Google Scholar
  48. 48.
    European Medicines Agency, Background review for cyclodextrins used as excipients. EMA: (2014). http://www.ema.europa.eu/docs/en_GB/document_library/Report/2014/12/WC500177936.pdf Accessed 8 Nov 2018
  49. 49.
    Yao, C., Dixit, U.G., Barker, J.H., Teesch, L.M., Love-Homan, L., Donelson, J.E., Wilson, M.E.: Attenuation of Leishmania infantum chagasi metacyclic promastigotes by sterol depletion. Infect. Immun. 81, 2507–2517 (2013)CrossRefGoogle Scholar
  50. 50.
    Zhu, X., Pandharkar, T., Werbovetz, K.: Identification of new antileishmanial leads from hits obtained by high-throughput screening. Antimic. Agent Chemother. 56, 1182–1189 (2012)CrossRefGoogle Scholar
  51. 51.
    Drugbank. Meglumine antimoniate. Drugbank online database (2018). https://www.drugbank.ca/drugs/DB13732. Accessed 22 Dec 2018
  52. 52.
    Martins, P.S., Ribeiro, R.R., Bahia, A.P.C., Neto, R.L.M., Frézard, F.: Physicochemical characterization of orally-active meglumine antimoniate/beta-cyclodextrin nanoassemblies: non-inclusion interactions and sustained drug release properties. Braz. J. Phys. 39, 223–225 (2009)Google Scholar
  53. 53.
    Martins, P.S., Ochoa, R., Pimenta, A.M.C., Ferreira, L.A.M., Melo, A.L., da Silva, J.B.B., Sinisterra, R.D., Demicheli, C., Frézard, F.: Mode of action of β-cyclodextrin as an absorption enhancer of the water-soluble drug meglumine antimoniate. Int. J. Pharm. 325, 39–47 (2006)CrossRefGoogle Scholar
  54. 54.
    Demicheli, C., Ochoa, R., da Silva, J.B.B., Falcão, C.A.B., Rossi-Bergmann, B., Melo, A.L., Sinisterra, R.D., Frézard, F.: Oral delivery of meglumine antimoniate–β-cyclodextrin complex for treatment of leishmaniasis. Antimicrob. Agent Chemother. 48, 100–103 (2004)CrossRefGoogle Scholar
  55. 55.
    Sundar, S., Chakravarty, J.: Liposomal amphotericin B and leishmaniasis: dose and response. J. Glob. Infect. Dis. 2, 159–166 (2010)CrossRefGoogle Scholar
  56. 56.
    Ghadi, R., Dand, N.: BCS class IV drugs: highly notorious candidates for formulation development. J. Control. Release 248, 71–95 (2017)CrossRefGoogle Scholar
  57. 57.
    Rajagopalam, N., Chen, S.C., Chow, W.S.: A study of the inclusion complex of amphotericin B with γ-cyclodextrin. Int. J. Pharm. 29, 161–168 (1986)CrossRefGoogle Scholar
  58. 58.
    Kajtár, M., Vikmon, M., Morlin, E., Szejtli, J.: Aggregation of Amphotericin B in the presence of γ-cyclodextrin. Biopolymers 28, 1585–1596 (1989)CrossRefGoogle Scholar
  59. 59.
    Ruiz, H.K., Serrano, D.R., Dea-Ayuela, M.A., Bilbao-Ramos, P.E., Bolás-Fernández, F., Torrado, J.J., Molero, G.: New amphotericin B-gamma cyclodextrin formulation for topical use with synergistic activity against diverse fungal species and Leishmania spp. Int. J. Pharm. 473, 148–157 (2014)CrossRefGoogle Scholar
  60. 60.
    Croft, S.L., Yardley, V.: Chemotherapy of leishmaniasis. Curr. Pharm. Des. 8, 319–342 (2002)CrossRefGoogle Scholar
  61. 61.
    Tocris Bioscience: Pentamidine isethionate. (2019). https://www.tocris.com/products/pentamidine-isethionate_3277#product-citations. Accessed 7 Jan 2019
  62. 62.
    U.S. National Library of Medicine: Pentamidine. ChemIDplus—a toxnet database (2018). https://chem.nlm.nih.gov/chemidplus/rn/100-33-4. Accessed 7 Jan 2019
  63. 63.
    De Paula, E.E.B., De Sousa, F.B., Silva, D., Fernandes, J.C., Melo, F.R., Frézard, M.N., Grazul, F., Sinisterra, R.M., Mechado, F.C.: Insights into the multi-equilibrium, superstructure system based on β-cyclodextrin and a highly water soluble guest. Int. J. Pharm. 439, 207–215 (2012)CrossRefGoogle Scholar
  64. 64.
    Seedher, N., Agarwal, P.: Various solvent systems for solubility enhancement of enrofloxacin. Indian J. Pharm. Sci. 71, 82–87 (2009)CrossRefGoogle Scholar
  65. 65.
    Lizondo, M., Pons, M., Gallardo, M., Estelrich, J.: Physicochemical properties of enrofloxacin. J. Pharm. Biomed. Anal. 15, 1845–1849 (1997)CrossRefGoogle Scholar
  66. 66.
    Foresti, G.R., Becker, N., Silva, A.S., Almeida, W.R.R., Malesuik, M.D., Hass, S.E., Silva, F.E.B.: An alternative method for the dissolution of enrofloxacin tablets. Dissolut. Techol. 22, 23–27 (2015)CrossRefGoogle Scholar
  67. 67.
    Zadra, V.F., Custodio, C.C., Carvalho, M.A.S., Rodrigues-Carpentieri, L.N.: Binary inclusion complexes of enrofloxacin in 2-hydroxypropyl-β-cyclodextrin: preparation and characterization. World Small Animal Veterinary Association World Congress Proceedings. São Paulo, Brazil (2009). https://www.vin.com/apputil/content/defaultadv1.aspx?id=4253100&pid=11290. Accessed 19 Nov 2018
  68. 68.
    Vieira, N.C., Herrenknecht, C., Vacus, J., Fournet, A., Bories, C., Figadère, B., Espindola, L.S., Loiseau, P.M.: Selection of the most promising 2-substituted quinoline as antileishmanial candidate for clinical trials. Biomed. Pharmacother. 62, 684–689 (2008)CrossRefGoogle Scholar
  69. 69.
    Balaraman, K., Vieira, N.C., Moussa, F., Vacus, J., Cojean, S., Pomel, S., Bories, C., Figadère, B., Kesavan, V., Loiseau, P.M.: In vitro and in vivo antileishmanial properties of a 2-n-propylquinoline hydroxypropyl β-cyclodextrin formulation and pharmacokinetics via intravenous route. Biomed. Pharmacother. 76, 127–133 (2015)CrossRefGoogle Scholar
  70. 70.
    Courtney, R., Wexler, D., Radwanski, E., Lim, J., Laughlin, M.: Effect of food on the relative bioavailability of two oral formulations of posaconazole in healthy adults. Br. J. Clin. Pharmacol. 57, 218–222 (2003)CrossRefGoogle Scholar
  71. 71.
    National Center for Biotechnology Information, U.S. National Library of Medicine: Posoconazole. Compound Summary for CID 468595. PubChem (2019). https://pubchem.ncbi.nlm.nih.gov/compound/Posaconazole#section=Top. Accessed 9 Jan 2019
  72. 72.
    Hens, B., Bermejo, M., Tsume, Y., Gonzalez-Alvarez, I., Ruan, H., Matsui, K., Amidon, G.E., Cavanagh, K.L., Kuminek, G., Benninghoff, G., Fan, J., Rodríguez-Hornedo, N., Amidon, G.L.: Evaluation and optimized selection of supersaturating drug delivery systems of posaconazole (BCS class 2b) in the gastrointestinal simulator (GIS): an in vitro-in silico-in vivo approach. Eur. J. Pharm. Sci. 115, 258–269 (2018)CrossRefGoogle Scholar
  73. 73.
    Heimbecher, S.K., Monteith, D., Pipkin, J.D.: Posaconazole intravenous solution formulations stabilized by substituted β-cyclodextrin. Patent US9358297B2, Merck Sharp & Dohme Corp, 29 June 2010. https://patents.google.com/patent/US9358297B2/en. Accessed 19 Nov 2018
  74. 74.
    Bergman, J.D., Lees, L.S.: Activity of oral drugs against Leishmania tropica in human macrophagues in vitro. Am. J. Trop. Med. Hyg. 32, 947–951 (1983)CrossRefGoogle Scholar
  75. 75.
    Neal, R.A., van Bueren, J., Hooper, G.: The activity of nitrofurazone and furazolidone against Leishmania donovani, L. major and L. enriettii in vitro and in vivo. Ann. Trop. Med. Parasitol. 82, 453–456 (1988)CrossRefGoogle Scholar
  76. 76.
    Passos, S.R., Rodrigues, T.A., Madureira, A.P., Giunchetti, R.C., Zanini, M.S.: Clinical treatment of cutaneous leishmaniasis in dogs with furazolidone and domperidone. Int. J. Antimic. Agent 44, 463–465 (2014)CrossRefGoogle Scholar
  77. 77.
    Costa, J.M.L., Sampaio, R.N., Tada, M.S., Almeida, E.A., Veiga, E.P., Magalhaes, A.V., Marsden, P.D.: Furazolidone treatment of cutaneous leishmaniasis. Trans. Royal Soc. Trop. Med. Hyg. 79, 274 (1985)CrossRefGoogle Scholar
  78. 78.
    U.S. National Library of Medicine: Furazolidone. ChemIDplus—a toxnet database (2018). https://chem.nlm.nih.gov/chemidplus/rn/67-45-8. Accessed 9 Jan 2019
  79. 79.
    Carvalho, S.G., Siqueira, L.A., Zanini, M.S., Matos, A.P.S., Quaresma, C.H., da Silva, L.M., de Andrade, S.F., Severi, J.A., Villanova, J.C.O.: Physicochemical and in vitro biological evaluations of furazolidone-based β-cyclodextrin complexes in Leishmania amazonensis. Res. Vet. Sci. 119, 143–153 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.LAQV, Department of ChemistryUniversity of AveiroAveiroPortugal

Personalised recommendations