New fluorescent sensor based on a calix[4]arene bearing two triazole–coumarin units for copper ions: application for Cu2+ detection in human blood serum

  • Rahman HosseinzadehEmail author
  • Elham Domehri
  • Mahmood Tajbakhsh
  • Ahmadreza Bekhradnia
Original Article


A novel fluorescent chemosensor calix[4]arene L, containing two fluorogenic coumarin units at the lower rim has been synthesized via click reaction. The structure of this chemosensor, was characterized by IR, NMR spectra and elemental analysis. Ion-binding properties of L were investigated in acetonitrile with different metal ions and the recognition process was monitored by fluorescence, UV-Vis and 1H NMR spectral changes. In comparison with other metal ions, chemosensor L showed a specific selectivity toward copper ions‏. The Job plot analysis revealed that the binding between L with Cu2+ is in 1:1 stoichiometry. The association constant (Ka) for the complex L.Cu2+ was found to be 1.6 × 105 M−1. The limit of detection of the sensor L was determined to be 5.4 × 10−7 M. This sensitive and selective chemosensor was successfully applied for the detection of Cu2+ ions in human blood serum with 90–100% recovery.


Fluorescent sensor Copper ion Calix[4]arene Coumarin units Blood serum 



We gratefully acknowledge the financial support of the research council of University of Mazandaran.

Supplementary material

10847_2018_872_MOESM1_ESM.docx (2.7 mb)
Supplementary material 1 (DOCX 2767 KB)


  1. 1.
    Cowan, J.A.: Inorganic Biochemistry: An Introduction. Wiley, New York (1997)Google Scholar
  2. 2.
    Flora, S.J.S., Mittal, M., Mehta, A.: Heavy metal induced oxidative stress & its possible reversal by chelation therapy. Indian J. Med. Res. 128, 501–523 (2008)Google Scholar
  3. 3.
    Sutariya, P.G., Pandya, A., Lodhab, A., Menon, S.K.: Fluorescence switch on-off-on receptor constructed of quinoline allied calix[4]arene for selective recognition of Cu2+ from blood serum and F from industrial waste water. Analyst 138, 2531–2535 (2013)CrossRefGoogle Scholar
  4. 4.
    Barceloux, D.G.: Copper. J. Toxicol. Clin. Toxicol. 37, 217–230 (1999)CrossRefGoogle Scholar
  5. 5.
    Zhang, X.B., Peng, J., He, C.L., Shen, G.L., Yu, R.Q.: A highly selective fluorescent sensor for Cu2+ based on 2-(2′-hydroxyphenyl) benzoxazole in a poly (vinyl chloride) matrix. Anal. Chim. Acta 567, 189–195 (2006)CrossRefGoogle Scholar
  6. 6.
    Que, E.L., Domaille, D.W., Chang, C.J.: Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem. Rev. 108, 1517–1549 (2008)CrossRefGoogle Scholar
  7. 7.
    Georgopoulos, P.G., Roy, A., Yonone-Lioy, M.J., Opiekun, R.E., Lioy, P.J.: Environmental copper: its dynamics and human exposure issues. J. Toxicol. Environ. Health B. 4, 341–394 (2001)CrossRefGoogle Scholar
  8. 8.
    Gaetke, L.M., Ching, K.C.: Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189, 147–163 (2003)CrossRefGoogle Scholar
  9. 9.
    Valeur, B., Leray, I.: Design principles of fluorescent molecular sensors for cation recognition. Coord. Chem. Rev. 205, 3–40 (2000)CrossRefGoogle Scholar
  10. 10.
    De Silva, A.P., Gunaratne, H.Q.N., Gunnlaugsson, T., Huxley, J.M., Mchoy, C.P., Rademacher, J.T., Rice, T.E.: Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 97, 1515–1566 (1997)CrossRefGoogle Scholar
  11. 11.
    Beer, P.D., Gale, P.A.: Anion recognition and sensing: the state of the art and future perspectives. Angew. Chem. Int. Ed. 40, 486–516 (2001)CrossRefGoogle Scholar
  12. 12.
    Beer, P.D., Hayes, E.J.: Transition metal and organometallic anion complexation agents. Coord. Chem. Rev. 240, 167–189 (2003)CrossRefGoogle Scholar
  13. 13.
    Kim, J.S., Quang, D.T.: Calixarene-derived fluorescent probes. Chem. Rev. 107, 3780–3799 (2007)CrossRefGoogle Scholar
  14. 14.
    Rurack, K., Genger, U.R.: Rigidization, preorientation and electronic decoupling—the ‘magic triangle’ for the design of highly efficient fluorescent sensors and switches. Chem. Soc. Rev. 31, 116–127 (2002)CrossRefGoogle Scholar
  15. 15.
    Maity, D., Chakraborty, A., Gunupuru, R., Paul, P.: Calix[4]arene based molecular sensors with pyrene as fluoregenic unit: effect of solvent in ion selectivity and colorimetric detection of fluoride. Inorg. Chim. Acta. 372, 126–135 (2011)CrossRefGoogle Scholar
  16. 16.
    Xu, Z., Kim, S., Kim, H.N., Han, S.J., Lee, C., Kim, J.S., Qian, X., Yoon, J.: A naphthalimide–calixarene as a two-faced and highly selective fluorescent chemosensor for Cu2+ or F. Tetrahedron Lett. 48, 9151–9154 (2007)CrossRefGoogle Scholar
  17. 17.
    Joseph, R., Ramanuja, B., Acharya, A., Rao, C.P.: Fluorescence switch-on sensor for Cu2+ by an amide linked lower rim 1, 3-bis (2-picolyl) amine derivative of calix [4] arene in aqueous methanol. Tetrahedron Lett. 50, 2735–2739 (2009)CrossRefGoogle Scholar
  18. 18.
    Li, G.K., Xu, Z.X., Chen, C.F., Huang, Z.T.: A highly efficient and selective turn-on fluorescent sensor for Cu2+ ion based on calix[4]arene bearing four iminoquinoline subunits on the upper rim. Chem. Commun. 15, 1774–1776 (2008)CrossRefGoogle Scholar
  19. 19.
    Ma, H., Ma, Q., Su, M., Nie, L., Han, H., Xiong, S., Xin, B., Liu, G.: Detection of trace Cu II by a designed calix[4]arene based fluorescent reagent. New J. Chem. 26, 1456–1460 (2002)CrossRefGoogle Scholar
  20. 20.
    Rebek, J.r.: Host–guest chemistry of calixarene capsules. Chem. Commun. 8, 637–643 (2000)CrossRefGoogle Scholar
  21. 21.
    Webber, P.R.A., Cowley, A., Drew, M.G.B.: Potassium selective calix[4] semitubes. Chem. Eur. J. 9, 2439–2446 (2003)CrossRefGoogle Scholar
  22. 22.
    Dhir, A., Bhalla, V., Kumar, M.: Ratiometric sensing of Hg2+ based on the calix[4]arene of partial cone conformation possessing a dansyl moiety. Org. Lett. 10, 4891–4894 (2008)CrossRefGoogle Scholar
  23. 23.
    Malval, J.P., Leray, I., Valeur, B.: A highly selective fluorescent molecular sensor for potassium based on a calix[4]bisazacrown bearing boron-dipyrromethene fluorophores. New J. Chem. 29, 1089–1094 (2005)CrossRefGoogle Scholar
  24. 24.
    Chawla, H.M., Sahu, S.N., Shrivastava, R.: A novel calix[4]arene-based neutral semicarbazone receptor for anion recognition. Tetrahedron Lett. 48, 6054–6058 (2007)CrossRefGoogle Scholar
  25. 25.
    Kolb, H.C., Finn, M.G., Sharpless, K.B.: Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 ‏(2001)CrossRefGoogle Scholar
  26. 26.
    Song, M., Sun, Z., Han, C., Tian, D., Li, H., Kim, J.S.: Calixarene-based chemosensors by means of click chemistry. Chem. Asian. J. 9, 2344–2357 (2014)CrossRefGoogle Scholar
  27. 27.
    Maity, D., Govindaraju, T.: Highly selective colorimetric chemosensor for Co2+. Inorg. Chem. 50, 11282–11284 (2011)CrossRefGoogle Scholar
  28. 28.
    Secor, K.E., Glass, T.E.: Selective amine recognition: development of a chemosensor for dopamine and norepinephrine. Org. Lett. 6, 3727–3730 (2004)CrossRefGoogle Scholar
  29. 29.
    Yan, M.H., Li, T.R., Yang, Z.Y.: A novel coumarin Schiff-base as a Zn (II) ion fluorescent sensor. Inorg. Chem. Commun. 14, 463–465 (2011)CrossRefGoogle Scholar
  30. 30.
    Bekhradnia, A.R., Domehri, E., Khosravi, M.: Novel coumarin-based fluorescent probe for selective detection of Cu(II). Spectrochim. Acta A 152, 18–22 (2016)CrossRefGoogle Scholar
  31. 31.
    Hosseinzadeh, R., Nemati, M., Zadmard, R., Mohadjerani, M.: Amidofluorene-appended lower rim 1, 3-diconjugate of calix[4]arene: synthesis, characterization and highly selective sensor for Cu2+. Beilstein J. Org. Chem. 12, 1749–1757 (2016)CrossRefGoogle Scholar
  32. 32.
    Chalmardi, G.B., Tajbakhsh, M., Bekhradnia, A.R., Hosseinzadeh, R.: A highly sensitive and selective novel fluorescent chemosensor for detection of Cr3+ based on a Schiff base. Inorg. Chim. Acta. 462, 241–248 (2017)CrossRefGoogle Scholar
  33. 33.
    Tajbakhsh, M., Chalmardi, G.B., Bekhradnia, A.R., Hosseinzadeh, R., Hasani, N., Amiri, M.R.A.: A new fluorene-based Schiff-base as fluorescent chemosensor for selective detection of Cr3+ and Al3+. Spectrochim. Acta A 189, 22–31 (2018)CrossRefGoogle Scholar
  34. 34.
    Li, Z.T., Ji, G.Z., Zhao, C.X., Yuan, S.D., Ding, H., Huang, C., Du, A.L., Wei, M.: Self-assembling calix[4]arene [2]catenanes. preorganization, conformation, selectivity, and efficiency. J. Org. Chem. 64, 3572–3584 (1999)CrossRefGoogle Scholar
  35. 35.
    Ivana, K., Pavol, K.: Synthesis of novel coumarin based fluorescent probes. Collect. Czech. Chem. Commun. 72, 996–1004 (2007)CrossRefGoogle Scholar
  36. 36.
    Ho, I.T., Haung, K.C., Chung, W.S.: 1,3-Alternate calix[4]arene as a homobinuclear ditopic fluorescent chemosensor for Ag+ ions. Chem. Asian. J. 6, 2738–2746 (2011)CrossRefGoogle Scholar
  37. 37.
    Choi, M., Kim, M., Lee, K.D., Han, K.N., Yoon, I.A., Chung, H.J., Yoon, J.: A new reverse PET chemosensor and its chelatoselective aromatic cadmiation. Org. Lett. 3, 3455–3457 (2001)CrossRefGoogle Scholar
  38. 38.
    Kim, S.K., Lee, J.K., Lim, J.M., Kim, J.W., Kim, J.S.: Pb2+ sensing chemo-sensor: thiacalix[4]crown-based lumino-ionophore. Bull. Korean Chem. Soc. 25, 1247–1250 (2004)CrossRefGoogle Scholar
  39. 39.
    Chae, M.Y., Cherian, X.M., Czarnik, A.W.: New reagents for the syntheses of fluorescent chemosensors. Anthrylogous ethylene dibromides. J. Org. Chem. 58, 5797–5801 (1993)CrossRefGoogle Scholar
  40. 40.
    Li, Y., Zhang, X., Zhu, B., Yan, J., Xu, W.: A highly selective colorimetric and “off-on-off” fluorescent probe for fluoride ions. Anal. Sci. 26, 1077–1080 (2010)CrossRefGoogle Scholar
  41. 41.
    Ma, Q.J., Zhang, X.B., Zhao, X.H., Jin, Z., Mao, G.J., Shen, G.L., Yu, R.Q.: A highly selective fluorescent probe for Hg2+ based on a rhodamine–coumarin conjugate. Anal. Chim. Acta 663, 85–90 (2010)CrossRefGoogle Scholar
  42. 42.
    Benesi, H.A., Hildebrand, J.H.J.: A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. Soc. 71, 2703–2707 (1949)CrossRefGoogle Scholar
  43. 43.
    Li, Z.Y., Su, H.K., Tong, H.X., Yin, Y., Xiao, T., Sun, X.Q., Wang, L., et al.: Calix [4] arene containing thiourea and coumarin functionality as highly selective fluorescent and colorimetric chemosensor for fluoride ion. Spectrochim. Acta A 200, 307–312 (2018)CrossRefGoogle Scholar
  44. 44.
    Chawla, H.M., Goel, P., Shukla, R.: Calix [4] arene based molecular probe for sensing copper ions. Tetrahedron Lett. 55, 2173–2176 (2014)CrossRefGoogle Scholar
  45. 45.
    Quang, D.T., Jung, H.S., Yoon, J.H., Lee, S.Y., Kim, J.S.: Coumarin appended calix [4] arene as a selective fluorometric sensor for Cu2+ ion in aqueous solution. Bull. Korean Chem. Soc. 28, 682–684 (2007)CrossRefGoogle Scholar
  46. 46.
    Chawla, H.M., Munjal, P., Goel, P.: Synthesis and evaluation of a new colorimetric and ratiometric fluorescence probe for copper ions. J. Lumin. 164, 138–145 (2015)CrossRefGoogle Scholar
  47. 47.
    Yeh, J.T., Chen, W.C., Liu, S.R., Wu, S.P.: A coumarin-based sensitive and selective fluorescent sensor for copper(II) ions. New J. Chem. 38, 4434–4439 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Organic Chemistry, Faculty of ChemistryUniversity of MazandaranBabolsarIran
  2. 2.Pharmaceutical Sciences Research Center, Department of Medicinal ChemistryMazandaran University of Medical SciencesSariIran

Personalised recommendations