Advertisement

Deciphering the nature of interactions in nandrolone/testosterone encapsulated cucurbituril complexes: a computational study

  • A. Suvitha
  • M. Souissi
  • R. Sahara
  • N. S. VenkataramananEmail author
Original Article
  • 151 Downloads

Abstract

The intention of the study is to find the nature of interactions that exist in inclusion complexes formed between the steroids, nandrolone, and testosterone with cucurbit[n]urnils (n = 7 and 8) host, using density functional theory incorporated with empirical dispersion correction. Upon encapsulation, nandrolone caused a larger geometrical distortion in cucurbit[8]uril geometry, while testosterone inclusion complex is formed with a larger number of intermolecular hydrogen bonds. The molecular electrostatic potential examination shows that the positive potential observed on the eight-membered ring in CB7 got reduced upon encapsulation, while on the nandrolone the negative potential on carbonyl unit has increased. AIM analysis shows that in inclusion complexes, the observed electron density are higher for the interactions between the oxygen atoms of carbonyl fringe of cucurbituril molecule and the steroid molecules. The NCI isosurface of nandrolone@CB7 has green patches in between the nandrolone and cucurbituril molecule, evenly distributed. In the testosterone@CB7, along with the green patches, red patches, due to the steric crowding between the testosterone and cucurbit[7]uril, were observed. The energy decomposition analysis parameters show that Pauli’s repulsive term was highest for nandrolone@CB7. When testosterone is the guest, repulsive energy was found to be larger than nandrolone guest. From the above interference, it can be confirmed that the steric hindrance that arises during the interaction of testosterone with CB7 reduces the stability of the complex, and the nandrolone best fit inside the CB7 cavity with the combination of hydrogen bonding and weak van der Waals bonding as intermolecular interactions.

Keywords

Cucurbituril DFT AIM EDA Inclusion complex 

Notes

Funding

Funding was provided by Science and Engineering Research Board (Grant No: EMR-II-SB/S1/PC-047/2013).

Supplementary material

10847_2018_869_MOESM1_ESM.docx (243 kb)
Supplementary material 1 (DOCX 243 KB)

References

  1. 1.
    Schneider, H.J., Schiestel, T., Zimmermann, P.: Host-guest supramolecular chemistry. 34. the incremental approach to noncovalent interactions: coulomb and van der Waals effects in organic ion pairs. J. Am. Chem. Soc. 114, 7698–7703 (1992)CrossRefGoogle Scholar
  2. 2.
    Puttreddy, R., Beyeh, N.K., Ras, R.H.A., Rissanen, K.: Host-guest complexes of C-ethyl-2-methylresorcinarene and aromatic N,Nʹ-dixodes. Chemistryopen 6, 417–423 (2017)CrossRefGoogle Scholar
  3. 3.
    Webber, M.J., Langer, R.: Drug delivery by supramolecular design. Chem. Soc. Rev. 46, 6600–6620 (2017)CrossRefGoogle Scholar
  4. 4.
    Moussa, Y.E., Ong, Y.Q.E., Perry, J.D., Cheng, Z., Kayser, V., Cruz, E., Kim, R.R., Sciortino, N., Wheate, N.J.: Demonstration of in vitro host-guest complex formation and safety of para-sulfonatocalix[8]arene as a delivery vechicle for two antibiotic drugs. J. Pharm. Sci.  https://doi.org/10.1016/j.xphs.2018.08.016 (2018)Google Scholar
  5. 5.
    Al-Dubaili, N., El-Tarabily, K., Shaleh, N.: Host-guest complexes of imazalil with cucurbit[8]uril and β-cyclodextrin and their effect on plant pathogenic fungi. Sci. Rep. 8, 2839–2849 (2018)CrossRefGoogle Scholar
  6. 6.
    Ghosh, R., Ekka, D., Rajbanshi, B., Yasmin, A., Roy, N.M.: Synthesis, characterization of 1-butyl-4-methylpyridinium lauryl sulfate and its inclusion phenomenon with β-cyclodextrin for enhanced applications. Colloid. Surf. A. 548, 206–217 (2018)CrossRefGoogle Scholar
  7. 7.
    Spenst, P., Sieblist, A., Wůrthner, F.: Perylene bisimide cyclophanes with high binding affinity for large planar polycyclic aromatic hydrocarbons: Host-guest complexation versus self-encapsulation of side arms. Chem. Eur. J. 23, 1667–1675 (2017)CrossRefGoogle Scholar
  8. 8.
    Fahmy, S.A., Ponte, F., Abd El-Rahman, M.K., Russo, N., Sicilia, E., Shoeib, T.: Investigation of the host-guest complexation between 4-sulfocalix[4]arene and nedaplatin for potential use in drug deliver. Spectrochim. Acta. A. 193, 528–536 (2018)CrossRefGoogle Scholar
  9. 9.
    Tan, L.-L., Zhang, Y., Li, B., Wang, K., Zhang, X.-A., Tao, S., Yang, Y.: Y.-W.: Selective recognition of solvent molecules in solution and the solid state by 1,4-dimethoxypillar[5]arene driven by attractive forces. New. J. Chem. 38, 845–851 (2014)CrossRefGoogle Scholar
  10. 10.
    Rekharsky, M.V., Mori, T., Yang, C., Ko, Y.H., Selvapalam, N., Kim, H., Sobransingh, D., Kaifer, A.E., Liu, S., Lsaacs, L., Chen, W., Moghaddam, S., Gilson, M.K., Kim, K., Inoue, Y.: A synthetic host-guest system achieves avidin-biotin affinity by overcoming enthalpy-entropy compensation. Proc. Natl. Acad. Sci. USA. 104, 20732–20742 (2007)CrossRefGoogle Scholar
  11. 11.
    Aryal, G.H., Vik, R., Assaf, K.I., Hunter, K.W., Huang, L., Jayawickramarajah, J.: Structural effects on guest binding in cucurbit[8]uril-perylneneimide host-guest complexes. ChemistrySelect 3, 4699–4704 (2018)CrossRefGoogle Scholar
  12. 12.
    Yin, H., Huang, Q., Zhao, W., Bardelang, D., Siri, D., Chen, X., Lee, S.M.Y., Wang, R.: Supramolecular encapsulation and bioactivity modulation of a halonium ion by cucurbit[n]uril (n = 7, 8). J. Org. Chem. 83, 4882–4887 (2018)CrossRefGoogle Scholar
  13. 13.
    Barooah, N., Khurana, R., Bhasikuttan, A.C., Mohanty, J.: Stimuli-responsive supra-biomolecular nanoassemblies of cucurbit[7]uril with bovine serum albumin: Drug delivery and sensor applications. Isr. J. Chem. 58, 276–285 (2018)CrossRefGoogle Scholar
  14. 14.
    Danylyuk, O., Butkiewicz, H., Coleman, A.W., Suwinska, K.: Host-guest complexes of local anesthetics with cucurbit[6]uril and para-sulphonatocalix[8]arene in solid state. J. Mol. Struct. 1150, 28–36 (2017)CrossRefGoogle Scholar
  15. 15.
    Hostaš, J., Sigwalt, D., Šekutor, M., Ajani, H., Dubecky, M., Řezáč, J., Zavliji, P.Y., Cao, L., Wohlschalger, C., Mlinarič-Majerski, K., Issacs, L.I., Glaser, R., Hobza, P.: A nexus between theory and experiment: non-empirical quantum mechanical computational methodology applied to cucurbit[n]uril.guest binding interactions. Chem. A. Eur. J. 48, 17226–17238 (2016)CrossRefGoogle Scholar
  16. 16.
    Hassanzadeh, K., Akhtari, K., Esmaeili, S.S., Vaziri, A., Zamani, H.: Encapsulation of thiotepa and altretamine as neutrotoxic anticancer drugs in cucurbit[n] uril (n = 7,8) nanocapsules: a DFT study. J. Theor. Comput. Chem. 15, 1650056 (2016)CrossRefGoogle Scholar
  17. 17.
    Shewale, M.N., Lande, D.N., Gejji, S.P.: Encapsulation of benzimidazole derivatives within cucurbit[7]uril: density functional investigations. J. Mol. Liq. 216, 309–317 (2016)CrossRefGoogle Scholar
  18. 18.
    Poša, M., Popović, K.: Structure-property relationships in sodium muricholate derivative (bile salts) micellization: the effect of conformation of steroid skeleton on hydrophobicity and micelle formation-pattern recognition and potential membranoprotective properties. Mol. Pharam. 14, 3343–3355 (2017)CrossRefGoogle Scholar
  19. 19.
    Bai, G., Sheng, J., Wang, Y., Wu, H., Zhao, Y., Zhuo, K., Bastos, M.: Interaction between a hydrophobic rigid face and flexible alkyl tail: thermodynamics of self-assembling of sodium cholate and SDS. J. Chem. Theormodyn. 100, 131–139 (2016)CrossRefGoogle Scholar
  20. 20.
    Assaf, K.I., Florea, M., Antony, J., Henriksen, N.M., Yin, J., Hansen, A., Qu, Z., Sure, R., Klapstein, D., Gilson, M.K., Grimme, S., Nau, W.M.: HYDROPHOBE challenge: a joint experimental and computational study on the host-guest binding of hydrocarbons to cuubiturils, allowing explicit evaluation of guest hydration free-energy contributions. J. Phys. Chem. B. 121, 11144–11162 (2017)CrossRefGoogle Scholar
  21. 21.
    Gamal-Eldin, M.A., Macartney, D.H.: Cucurbit[7]uril host-guest complexations of steroidal neuromuscular blocking agents in aqueous solution. Can. J. Chem. 92, 243–249 (2014)CrossRefGoogle Scholar
  22. 22.
    Lazar, A.I., Biedermann, F., Mustafina, K.R., Assaf, K.I., Hennig, A., Nau, W.M.: Nanomolar binding of steroids to cucurbit[n]urils: selectivity and applications. J. Am. Chem. Soc. 138, 13022–13029 (2016)CrossRefGoogle Scholar
  23. 23.
    Grimme, S.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comp. Chem. 27, 1787–1799 (2006)CrossRefGoogle Scholar
  24. 24.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E. Jr., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Star-overov, V.N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Strat-mann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman J.B, Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian G09, Revision D.01. Gaussian, Inc., Wallingford (2010)Google Scholar
  25. 25.
    Simon, S., Duran, M., Dannenberg, J.J.: How does basis set superposition error change the potential surfaces for hydrogen bonded dimers? J. Chem. Phys. 105, 11024–11031 (1996)CrossRefGoogle Scholar
  26. 26.
    Klamt, A., Jonas, V., Burger, T., Lohrenz, J.C.W.: Refinement and Parameterization of COSMO-RS. J. Phys. Chem. A 102, 5074–5085 (1998)CrossRefGoogle Scholar
  27. 27.
    Bulat, F.A., Toro-Labbė, A., Brinck, T., Murray, J.S., Politzer, P.: Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies. J. Mol. Model. 16, 1679–1691 (2010)CrossRefGoogle Scholar
  28. 28.
    Venkataramanan, N.S., Suvitha, A.: Theoretical investigation of the binding of nucleobases to cucurbiturils by disperstion corrected DFT approaches. J. Phys. Chem. B. 121, 4733–4744 (2017)CrossRefGoogle Scholar
  29. 29.
    Venkataramanan, N.S., Suvitha, A., Kawazoe, Y.: Unravelling the nature of the binding of cubane and substituted cubanes within cucurbiturils: A DFT and NCI study. J. Mol. Liq. 260, 18–19 (2018)CrossRefGoogle Scholar
  30. 30.
    Venkataramanan, N.S., Suvitha, A.: Encapsulation of sulfur, oxygen, and nitrogen mustards by cucurbiturils: a DFT study. J. Incl. Phenom. Macrocycl. Chem. 83, 387–400 (2015)CrossRefGoogle Scholar
  31. 31.
    Lu, T., Chen, F.: Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012)CrossRefGoogle Scholar
  32. 32.
    Zhurko, G.A., Zhurko, D.A.: Chemcraft. http://www.chemcraftprog.com/
  33. 33.
    te Velde, G., Bickelhaupt, F.M., Baerends, E.J., Guerra, C.F., van Gisbergen, S.J.A., Snijders, J.G., Ziegler, T.: Chemistry with ADF. J. Comput. Chem. 22, 931–967 (2001)CrossRefGoogle Scholar
  34. 34.
    Mohanty, B., Suvitha, A., Venkataramanan, N.S.: Piperine encapsulation within cucurbit[n]uril (n = 6, 7): a combined experimental and density functional study. ChemistrySelect 3, 1933–1941 (2018)CrossRefGoogle Scholar
  35. 35.
    Assaf, K.I., Nau, W.M.: Cucurbiturils: from synthesis to high-affinity binding and catalysis. Chem. Soc. Rev. 44, 394–418 (2015)CrossRefGoogle Scholar
  36. 36.
    Venkataramanan, N.S., Suvitha, A.: Structure, electronic, inclusion complex formation behavior and spectral properties of pillarplex. J. Incl. Phenom. Macrocycl. Chem. 88, 53–67 (2017)CrossRefGoogle Scholar
  37. 37.
    Padmanabhan, J., Parthasarathi, R., Subramanian, V., Chattaraj, P.K.: Electrophilicity based charge transfer descriptor. J. Phys. Chem. A 111, 1358–1361 (2007)CrossRefGoogle Scholar
  38. 38.
    Gupta, K., Giri, S., Chattaraj, P.K.: Charge-based DFT descriptors for diels-alder reactions. J. Phys. Org. Chem. 26, 187–193 (2013)CrossRefGoogle Scholar
  39. 39.
    Marama, N.L., Casassa, S.M., Sambrano, J.R.: Adsorption of NH3 with different coverages on single-walled ZnO nanotube: DFT and QTAIM study. J. Phys. Chem. C 121, 8109–8119 (2017)CrossRefGoogle Scholar
  40. 40.
    Hussain, M.A., Soujanya, Y., Sastry, G.N.: Computational design of functionalized imidazolate linkers of zeolitic imidazolate frameworks for enhanced CO2 adsorption. J. Phys. Chem. C 119, 23607–23618 (2015)CrossRefGoogle Scholar
  41. 41.
    Venkataramanan, N.S., Suvitha, A.: Nature of bonding and cooperativity in linear DMSO clusters: a DFT, AIM and NCI analysis. J. Mol. Graph. Model. 81, 50–59 (2018)CrossRefGoogle Scholar
  42. 42.
    Ziegler, T., Rauk, A.: On the calculation of bonding energies by the Hartree–Fock slater method. Theor. Chim. Acta. 45, 1–10 (1977)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • A. Suvitha
    • 1
  • M. Souissi
    • 2
  • R. Sahara
    • 2
  • N. S. Venkataramanan
    • 1
    Email author
  1. 1.Department of Chemistry, School of Chemical and Biotechnology (SCBT)SASTRA Deemed UniversityThanjavurIndia
  2. 2.Research Center for Structural MaterialsNIMSTsukubaJapan

Personalised recommendations