Enzymatic production of steviol using a commercial β-glucosidase and preparation of its inclusion complex with γ-CD

  • Hui-da WanEmail author
  • Yao Ni
  • Hong-jian Zhang
  • Dan Li
  • Da-wei Wang
Original Article


Diterpenoid steviol and its derivatives have gained a growing interest for their broad therapeutic benefits in recent years. In nature, steviol exists primarily in the form of glycosides which are subject to hydrolysis after oral injestion. The present study evaluated the production of steviol using a new commercially available β-glucosidase and its inclusion complex, namely γ-cyclodextrin/steviol (γ-CD/steviol). Firstly, steviol was prepared by sequential hydrolysis from stevioside via steviolbioside, with the highest conversion of stevioside at 100% and a total yield of 64.9% based on the results of single factor experiments. To enhance steviol’s aqueous solubility, γ-CD/steviol was prepared by a co-evaporation method. Results showed that the solubility of steviol increased by a factor of 102 times using an 1:1 γ-CD/steviol inclusion complex. Physiochemical properties of the γ-CD/steviol complex were evaluated by HPLC, FT-IR, TGA, XRD, SEM and NMR. At ambient temperature, the γ-CD/steviol complex aqueous solution was extremely stable when assayed in the pH range from 4.01 to 9.18 up to 30 days.


Steviol Stevioside Cyclodextrin Inclusion complex Solubility Stability 



The authors were grateful to the financial support by National Natural Science Foundation of China (31371837).


  1. 1.
    Panagiotou, C., Mihailidou, C., Brauhli, G., Katsarou, O., Moutsatsou, P.: Effect of steviol, steviol glycosides and stevia extract on glucocorticoid receptor signaling in normal and cancer blood cells. Mol. Cell. Endocrinol. 460(C), 189–199 (2018)CrossRefGoogle Scholar
  2. 2.
    Mathur, S., Bulchandani, N., Parihar, S., Shekhawat, G.S.: Critical review on steviol glycosides: pharmacological, toxicological and therapeutic aspects of high potency zero caloric sweetener. Int. J. Pharm. 13(7), 916–928 (2017)CrossRefGoogle Scholar
  3. 3.
    Carrera-Lanestosa, A., Moguel-Ordonez, Y., Segura-Campos, M.: Stevia rebaudiana Bertoni: a natural alternative for treating diseases associated with metabolic syndrome. J. Med. Food 20(10), 933–943 (2017)CrossRefGoogle Scholar
  4. 4.
    Carocho, M., Morales, P., Ferreira, I.C.F.R.: Sweeteners as food additives in the XXI century: a review of what is known, and what is to come. Food Chem. Toxicol. 107, 302–317 (2017)CrossRefGoogle Scholar
  5. 5.
    Urban, J.D., Carakostas, M.C., Taylor, S.L.: Steviol glycoside safety: are highly purified steviol glycoside sweeteners food allergens? Food Chem. Toxicol. 75, 71–78 (2015)CrossRefGoogle Scholar
  6. 6.
    Koubaa, M., Rosello-Soto, E., Sic Zlabur, J., Rezek Jambrak, A., Brncic, M., Grimi, N., Boussetta, N., Barba, F.J.: Current and new insights in the sustainable and green recovery of nutritionally valuable compounds from Stevia rebaudiana Bertoni. J. Agric. Food Chem. 63(31), 6835–6846 (2015)CrossRefGoogle Scholar
  7. 7.
    Gasmalla, M.A.A., Yang, R., Hua, X.: Stevia rebaudiana Bertoni: an alternative sugar replacer and its application in food industry. Food Eng. Rev. 6(4), 150–162 (2014)CrossRefGoogle Scholar
  8. 8.
    Dusek, J., Carazo, A., Trejtnar, F., Hyrsova, L., Holas, O., Smutny, T., Micuda, S., Pavek, P.: Steviol, an aglycone of steviol glycoside,sweeteners, interacts with the pregnane X (PXR) and aryl hydrocarbon (AHR) receptors in detoxification regulation. Food Chem. Toxicol. 109, 130–142 (2017)CrossRefGoogle Scholar
  9. 9.
    Gupta, E., Kaushik, S., Purwar, S., Sharma, R., Balapure, A.K., Sundaram, S.: Anticancer potential of steviol in MCF-7 human breast cancer cells. Pharmacogn. Mag. 13(51), 345–350 (2017)CrossRefGoogle Scholar
  10. 10.
    Momtazi-Borojeni, A.A., Esmaeili, S.-A., Abdollahi, E., Sahebkar, A.: A review on the pharmacology and toxicology of steviol glycosides extracted from stevia rebaudiana. Curr. Pharm. Des. 23(11), 1616–1622 (2017)CrossRefGoogle Scholar
  11. 11.
    Lin, S.J., Su, T.C., Chau, C.N., Chang, Y.C., Yang, L.M., Kuo, Y.C., Huang, T.J.: Synthesis of C-4-substituted steviol derivatives and their inhibitory effects against Hepatitis B virus. J. Nat. Prod. 79(12), 3057–3064 (2016)CrossRefGoogle Scholar
  12. 12.
    Khaibullin, R.N., Strobykina, I.Y., Kataev, V.E., Lodochnikova, O.A., Gubaidullin, A.T., Musin, R.Z.: New synthesis of diterpenoid (16S)-dihydrosteviol. Russ. J. Gen. Chem. 79(5), 967–971 (2009)CrossRefGoogle Scholar
  13. 13.
    Wan, H.D., Xia, Y.M.: Enzymatic transformation of stevioside using a β-galactosidase from Sulfolobus sp. Food Funct. 6(10), 3291–3295 (2015)CrossRefGoogle Scholar
  14. 14.
    Milagre, H.M.S., Martins, L.R., Takahashi, J.A.: Novel agents for enzymatic and fungal hydrolysis of stevioside. Braz. J. Microbiol. 40(2), 367–372 (2009)CrossRefGoogle Scholar
  15. 15.
    Thi Thanh Hanh, N., Seo, C., Gu, B.C., Lim, H.J., Ha, J.M., Kim, S.B., Park, J.S., Kim, D.: Production of steviol from steviol glucosides using β-glucosidase from a commercial pectinase, Sumizyme PX. Biotechnol. Lett. 40(1), 197–204 (2018)CrossRefGoogle Scholar
  16. 16.
    Hu, H., Sun, X.O., Tian, F., Zhang, H., Liu, Q., Tan, W.: Neuroprotective effects of isosteviol sodium injection on acute focal cerebral ischemia in rats. Oxid. Med. Cell. Longev. 2016, 1379162 (2016)Google Scholar
  17. 17.
    Lohoelter, C., Weckbecker, M., Waldvogel, S.R.: (-)-Isosteviol as a versatile Ex-Chiral-Pool building block for organic chemistry. Chem. Pharm. Bull. (Tokyo) 2013(25), 5539–5554 (2013)Google Scholar
  18. 18.
    Mura, P.: Analytical techniques for characterization of cyclodextrin complexes in the solid state: a review. J. Pharm. Biomed. Anal. 113, 226–238 (2015)CrossRefGoogle Scholar
  19. 19.
    Wu, Y., Shi, R., Wu, Y.-L., Holcroft, J.M., Liu, Z., Frasconi, M., Wasielewski, M.R., Li, H., Stoddart, J.F.: Complexation of polyoxometalates with cyclodextrins. J. Am. Chem. Soc. 137(12), 4111–4118 (2015)CrossRefGoogle Scholar
  20. 20.
    Yi, J.G., Liang, W.T., Wei, X.Q., Yao, J.B., Yan, Z.Q., Su, D., Zhong, Z.H., Gao, G.W., Wu, W.H., Yang, C.: Switched enantioselectivity by solvent components and temperature in photocyclodimerization of 2-anthracenecarboxylate with 6(A),6(x)-diguanidio-gamma-cyclodextrins. Chin. Chem. Lett. 29(1), 87–90 (2018)CrossRefGoogle Scholar
  21. 21.
    Wei, X., Wu, W., Matsushita, R., Yan, Z., Zhou, D., Chruma, J.J., Nishijima, M., Fukuhara, G., Mori, T., Inoue, Y., Yang, C.: Supramolecular photochirogenesis driven by higher-order complexation: enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate to slipped cyclodimers via a 2:2 complex with β-cyclodextrin. J. Am. Chem. Soc. 140(11), 3959–3974 (2018)CrossRefGoogle Scholar
  22. 22.
    Dai, L., Wu, W., Liang, W., Chen, W., Yu, X., Ji, J., Xiao, C., Yang, C.: Enhanced chiral recognition by γ-cyclodextrin–cucurbit[6]uril-cowheeled [4]pseudorotaxanes. Chem. Commun. 54(21), 2643–2646 (2018)CrossRefGoogle Scholar
  23. 23.
    Pang, S., Ma, C., Zhang, N., He, L.: Investigation of the solubility enhancement mechanism of rebaudioside D using a solid dispersion technique with potassium sorbate as a carrier. Food Chem. 174, 564–570 (2015)CrossRefGoogle Scholar
  24. 24.
    Lu, T., Xia, Y.M.: Transglycosylation specificity of glycosyl donors in transglycosylation of stevioside catalysed by cyclodextrin glucanotransferase. Food Chem. 159(0), 151–156 (2014)CrossRefGoogle Scholar
  25. 25.
    Musa, A., Miao, M., Zhang, T., Jiang, B.: Biotransformation of stevioside by Leuconostoc citreum SK24.002 alternansucrase acceptor reaction. Food Chem. 146, 23–29 (2014)CrossRefGoogle Scholar
  26. 26.
    Lemus-Mondaca, R., Vega-Gálvez, A., Zura-Bravo, L., Ah-Hen, K.: Stevia rebaudiana Bertoni, source of a high-potency natural sweetener: a comprehensive review on the biochemical, nutritional and functional aspects. Food Chem. 132(3), 1121–1132 (2012)CrossRefGoogle Scholar
  27. 27.
    Ohtani, K., Aikawa, Y., Fujisawa, Y., Kasai, R., Tanaka, O., Yamasaki, K.: Solubilization of steviolbioside and steviolmonoside with γ-cyclodextrin and its application to selective syntheses of better sweet glycosides from stevioside and rubusoside. Chem. Pharm. Bull. 39(12), 3172–3174 (1991)CrossRefGoogle Scholar
  28. 28.
    Wu, Y., Liu, C.J., Liu, X., Dai, G.F., Du, J.Y., Tao, J.-C.: Stereoselective synthesis, characterization, and antibacterial activities of novel isosteviol derivatives with d-ring modification. Helv. Chim. Acta 93(10), 2052–2069 (2010)CrossRefGoogle Scholar
  29. 29.
    Avent, A.G., Hanson, J.R., De Oliveira, B.H.: Hydrolysis of the diterpenoid glycoside, stevioside. Phytochemistry 29(8), 2712–2715 (1990)CrossRefGoogle Scholar
  30. 30.
    Higuchi, T., Connors, K.A.: Phase-solubility techniques. Adv. Anal. Chem. Instrum. 4, 117–212 (1965)Google Scholar
  31. 31.
    Kim, B.H., Park, S.K.: Enhancement of volatile aromatic compounds in black raspberry wines via enzymatic treatment. J. Inst. Brew. 123(2), 277–283 (2017)CrossRefGoogle Scholar
  32. 32.
    Chen, J.M., Ding, L., Sui, X.C., Xia, Y.M., Wan, H.D., Lu, T.: Production of a bioactive sweetener steviolbioside via specific hydrolyzing ester linkage of stevioside with a β-galactosidase. Food Chem. 196, 155–160 (2016)CrossRefGoogle Scholar
  33. 33.
    Liao, Y., Zhang, X., Li, C., Huang, Y., Lei, M., Yan, M., Zhou, Y., Zhao, C.: Inclusion complexes of HP-β-cyclodextrin with agomelatine: Preparation, characterization, mechanism study and in vivo evaluation. Carbohydr. Polym. 147, 415–425 (2016)CrossRefGoogle Scholar
  34. 34.
    Anselmi, C., Centini, M., Ricci, M., Buonocore, A., Granata, P., Tsuno, T., Facino, R.M.: Analytical characterization of a ferulic acid/γ-cyclodextrin inclusion complex. J. Pharm. Biomed. Anal. 40(4), 875–881 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
  2. 2.School of Chemical and Material EngineeringJiangnan UniversityWuxiChina

Personalised recommendations