Advertisement

Deciphering ephedrine inclusion complexes with β-cyclodextrin, 18-crown-6 and cucurbit[7]uril using spectral and molecular modeling methods

  • Suad K. S. Al-Burtomani
  • FakhrEldin O. Suliman
Original Article
  • 39 Downloads

Abstract

Inclusion complexes of ephedrine (EPh) with β-cyclodextrin (βCD), 18-crown-6 (18C6) and cucurbit[7]uril (CB7) were investigated using experimental and theoretical methods. The addition of βCD to the aqueous solution of EPh enhances the fluorescence emission spectrum at 312 nm. Whereas, the addition of CB7 and 18C6 cause enhancement of this band accompanied by growth of a band at around 412 nm. Electrospray ionization mass spectrometry, ESI-MS, results suggested that complexes of various stoichiometries are formed. The 1:1 complexes are the most dominant ones however, 1:2 (host: guest) stoichiometry and 2:1 (host: guest) stoichiometry for EPh with βCD and CB7 are also observed. The 1HNMR has indicated that EPh enters the CD hydrophobic cavity from the secondary rim and the aromatic ring is deeply inserted into the cavity with the ammonium ion left outside exposed to the aqueous solution. The molecular dynamics, MD, calculations show that EPh forms a stable complex with βCD and CB7 but not with 18C6. Furthermore, the ternary complexes of EPh–βCD with 18C6 and CB7 were found unstable according to the MD simulation studies, and ESI-MS experiments. The solid-state complexes prepared by freeze-drying and characterized by Fourier transform infrared spectroscopy and powder X-ray diffraction confirmed that only binary complexes are formed.

Keywords

Ephedrine Inclusion complex β-Cyclodextrin Cucurbit[7]uril Crown ether Molecular dynamics 

Notes

Acknowledgements

The authors thank the Central Analytical and Applied Research Unit (CAARU) at College of Science for the technical support. SK-Burtomani would like to thank SQU for the leave of absence and for the financial support.

Compliance with ethical standards

Conflicts of interest

There are no conflicts of interest to declare.

Supplementary material

10847_2018_866_MOESM1_ESM.docx (1.8 mb)
Supplementary material 1 (DOCX 1874 KB)

References

  1. 1.
    Murray, J., Kim, K., Ogoshi, T., Yaod, W., Gibb, B.C., Yao, W., Gibb, B.C.: The aqueous supramolecular chemistry of cucurbit[n]urils, pillar[n]arenes and deep-cavity cavitands. Chem. Soc. Rev. 46, 2479–2496 (2017).  https://doi.org/10.1039/C7CS00095B CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Sherje, A.P., Dravyakar, B.R., Kadam, D., Jadhav, M.: Cyclodextrin-based nanosponges: a critical review. Carbohydr. Polym. 173, 37–49 (2017).  https://doi.org/10.1016/j.carbpol.2017.05.086 CrossRefPubMedGoogle Scholar
  3. 3.
    Barrow, S.J., Kasera, S., Rowland, M.J., Barrio, J., del Scherman, O.A., Del Barrio, J., Scherman, O.A.: Cucurbituril-Based Mol. Recogn. Chem. Rev. 115, 12320–12406 (2015).  https://doi.org/10.1021/acs.chemrev.5b00341 CrossRefGoogle Scholar
  4. 4.
    Assaf, K.I., Nau, W.M.: Cucurbiturils: from synthesis to high-affinity binding and catalysis. Chem. Soc. Rev. 44, 394–418 (2015).  https://doi.org/10.1039/C4CS00273C CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Yang, Z., Yao, X., Xiao, Z., Chen, H., Ji, H.: Preparation and release behaviour of the inclusion complexes of phenylethanol with β-cyclodextrin. Flavour Fragr. J. 31, 206–216 (2016).  https://doi.org/10.1002/ffj.3302 CrossRefGoogle Scholar
  6. 6.
    Alonso, E.C.P., Riccomini, K., Silva, L.A.D., Galter, D., Lima, E.M., Durig, T., Taveira, S.F., Martins, F.T., Cunha-Filho, M.S.S., Marreto, R.N.: Development of carvedilol-cyclodextrin inclusion complexes using fluid-bed granulation: a novel solid-state complexation alternative with technological advantages. J. Pharm. Pharmacol. 68, 1299–1309 (2016).  https://doi.org/10.1111/jphp.12601 CrossRefPubMedGoogle Scholar
  7. 7.
    Yang, K., Wan, S., Chen, B., Gao, W., Chen, J., Liu, M., He, B., Wu, H.: Dual pH and temperature responsive hydrogels based on β-cyclodextrin derivatives for atorvastatin delivery. Carbohydr. Polym. 136, 300–306 (2016).  https://doi.org/10.1016/j.carbpol.2015.08.096 CrossRefPubMedGoogle Scholar
  8. 8.
    Wei, Y., Zhang, J., Zhou, Y., Bei, W., Li, Y., Yuan, Q., Liang, H.: Characterization of glabridin/hydroxypropyl-β-cyclodextrin inclusion complex with robust solubility and enhanced bioactivity. Carbohydr. Polym. 159, 152–160 (2017).  https://doi.org/10.1016/j.carbpol.2016.11.093 CrossRefPubMedGoogle Scholar
  9. 9.
    Carmo, C.S., do, Maia, C., Poejo, J., Lychko, I., Gamito, P., Nogueira, I., Bronze, M.R., Serra, A.T., Duarte, C.M.M.: Microencapsulation of α-tocopherol with zein and β-cyclodextrin using spray drying for colour stability and shelf-life improvement of fruit beverages. RSC Adv. 7, 32065–32075 (2017)CrossRefGoogle Scholar
  10. 10.
    Pal, K., Chandra, F., Mallick, S., Koner, A.L.: pH dependent supramolecular recognition of dapoxyl sodium sulfonate with 2-hydroxypropyl β-cyclodextrin: an application towards food-additive formulation. New J. Chem. 40, 6093–6100 (2016).  https://doi.org/10.1039/C5NJ03415A CrossRefGoogle Scholar
  11. 11.
    Pinho, E., Grootveld, M., Soares, G., Henriques, M.: Cyclodextrins as encapsulation agents for plant bioactive compounds. Carbohydr. Polym. 101, 121–135 (2014).  https://doi.org/10.1016/j.carbpol.2013.08.078 CrossRefPubMedGoogle Scholar
  12. 12.
    Gokel, G.W., Leevy, W.M., Weber, M.E.: Crown ethers: sensors for ions and molecular scaffolds for materials and biological models. Chem. Rev. 104, 2723–2750 (2004).  https://doi.org/10.1021/cr020080k CrossRefPubMedGoogle Scholar
  13. 13.
    Sarma, M., Chatterjee, T., Das, S.K.: Ammonium–crown ether based host–guest systems: N–H⋯O hydrogen bond directed guest inclusion featuring N–H donor functionalities in angular geometry. RSC Adv. 2, 3920 (2012).  https://doi.org/10.1039/c2ra20109g CrossRefGoogle Scholar
  14. 14.
    Späth, A., König, B.: Molecular recognition of organic ammonium ions in solution using synthetic receptors. Beilstein J. Org. Chem. 6, 32 (2010).  https://doi.org/10.3762/bjoc.6.32 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Rüdiger, V., Schneider, H.-J., Solov’ev, V.P., Kazachenko, V.P., Raevsky, O.: Crown ether–ammonium complexes: binding mechanisms and solvent effects. Eur. J. Org. Chem. 1999, 1847–1856 (1999)CrossRefGoogle Scholar
  16. 16.
    Doxsee, K.M., Francis, P.E., Weakley, T.J.R., Francis, P.E. Jr., Weakley, T.J.R., Doxsee, K.M. Jr.: Hydration, ion pairing, and sandwich motifs in ammonium nitrate complexes of crown ethers. Tetrahedron. 56, 6683–6691 (2000).  https://doi.org/10.1016/S0040-4020(00)00487-7 CrossRefGoogle Scholar
  17. 17.
    Kryatova, O.P., Korendovych, I.V., Rybak-Akimova, E.V., Kryatova, O.P., Korendovych, I.V., Kryatova, E.V., Korendovych, I.V., Rybak-Akimova, E.V.: Complexes of benzo-15-crown-5 with protonated primary amines and diamines. Tetrahedron. 60, 4579–4588 (2004).  https://doi.org/10.1016/j.tet.2004.03.080 CrossRefGoogle Scholar
  18. 18.
    Al-Burtomani, S.K.S., Suliman, F.O.: Experimental and theoretical study of the inclusion complexes of epinephrine with β-cyclodextrin, 18-crown-6 and cucurbit[7]uril. New J. Chem. (2018).  https://doi.org/10.1039/c7nj04766e CrossRefGoogle Scholar
  19. 19.
    Lagona, J., Mukhopadhyay, P., Chakrabarti, S., Isaacs, L.: The cucurbit[n]uril family. Angew. Chemie Int. Ed. 44, 4844–4870 (2005).  https://doi.org/10.1002/anie.200460675 CrossRefGoogle Scholar
  20. 20.
    Liu, S., Ruspic, C., Mukhopadhyay, P., Chakrabarti, S., Zavalij, P.Y., Isaacs, L.: The Cucurbit[n]uril family: prime components for self-sorting systems. J. Am. Chem. Soc. 127, 15959–15967 (2005)CrossRefGoogle Scholar
  21. 21.
    Moghaddam, S., Yang, C., Rekharsky, M., Ko, Y.H., Kim, K., Inoue, Y., Gilson, M.K.: New ultrahigh affinity host-guest complexes of cucurbit[7]uril with bicyclo[2.2.2]octane and adamantane guests: thermodynamic analysis and evaluation of M2 affinity calculations. J. Am. Chem. Soc. 133, 3570–3581 (2011).  https://doi.org/10.1021/ja109904u CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Cao, L., Šekutor, M., Zavalij, P.Y., Mlinaric̈-Majerski, K., Glaser, R., Isaacs, L., Sekutor, M., Zavalij, P.Y., Mlinaric-Majerski, K., Glaser, R., Isaacs, L., Mlinarić-Majerski, K., Glaser, R., Isaacs, L.: Cucurbit[7]uril × guest pair with an attomolar dissociation constant. Angew. Chemie Int. Ed. 53, 988–993 (2014).  https://doi.org/10.1002/anie.201309635 CrossRefGoogle Scholar
  23. 23.
    Mueller, S.W., Maclaren, R.: Chap. 2 Vasopressors and inotropes. In: Hemmings, H.C., Egan, T.D. (eds.) Pharmacology and Physiology for Anesthesia, pp. 390–404. W.B. Saunders, Philadelphia (2014)Google Scholar
  24. 24.
    Kopysov, V., Makarov, A., Boyarkin, O.V.: Identification of isomeric ephedrines by cold ion UV spectroscopy: toward practical implementation. Anal. Chem. 89, 544–547 (2017).  https://doi.org/10.1021/acs.analchem.6b04182 CrossRefPubMedGoogle Scholar
  25. 25.
    Pumera, M., Jelinek, I., Jindrich, J., Benada, O.: Β-Cyclodextrin-modified monolithic stationary phases for capillary electrochromatography and nano-hplc chiral analysis of ephedrine and ibuprofen. J. Liq. Chromatogr. Relat. Technol. 25, 2473–2484 (2002).  https://doi.org/10.1081/JLC-120014268 CrossRefGoogle Scholar
  26. 26.
    Huang, W.X., Xu, H., Fazio, S.D., Vivilecchia, R.V.: Chiral separation of primary amino compounds using a non-chiral crown ether with beta-cyclodextrin by capillary electrophoresis. J. Chromatogr. B 695, 157–162 (1997)CrossRefGoogle Scholar
  27. 27.
    Gingter, S., Ritter, H.: Chiral recognition of ephedrine: hydrophilic polymers bearing β-cyclodextrin moieties as chiral sensitive host molecules. Beilstein J. Org. Chem. 7, 1516–1519 (2011).  https://doi.org/10.3762/bjoc.7.177 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Wszelaka-Rylik, M.: Thermodynamics of β-cyclodextrin–ephedrine inclusion complex formation and covering of nanometric calcite with these substances. J. Therm. Anal. Calorim. 127, 1825–1834 (2017).  https://doi.org/10.1007/s10973-016-5467-x CrossRefGoogle Scholar
  29. 29.
    Suliman, F.O., Al-Burtomani, S.K.S.: Inclusion complexes of norepinephrine with β-cyclodextrin, 18-crown-6 and cucurbit[7]uril: experimental and molecular dynamics study. RSC Adv. 7, 9888–9901 (2017).  https://doi.org/10.1039/C6RA28638K CrossRefGoogle Scholar
  30. 30.
    Chen, W., Chang, C.E., Gilson, M.K.: Calculation of cyclodextrin binding affinities: energy, entropy, and implications for drug design. Biophys. J. 87, 3035–3049 (2004).  https://doi.org/10.1529/biophysj.104.049494 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    El-barghouthi, M.I., Assaf, K.I., Rawashdeh, A.M.M.: Molecular dynamics of methyl viologen-cucurbit [n] uril complexes in aqueous solution. J. Chem. Theory Comput. 6(4), 984–992 (2010)CrossRefGoogle Scholar
  32. 32.
    Assaf, K.I., Florea, M., Antony, J., Henriksen, N.M., Yin, J., Hansen, A., Qu, Z., Sure, R., Klapstein, D., Gilson, M.K., Grimme, S., Nau, W.M.: The HYDROPHOBE challenge: a joint experimental and computational study on the host-guest binding of hydrocarbons to cucurbiturils allowing explicit evaluation of guest hydration free energy contributions. J. Phys. Chem. B. 121, 11144–11162 (2017)CrossRefGoogle Scholar
  33. 33.
    Kim, J., Jung, I., Kim, S., Lee, E., Kang, J., Sakamoto, S., Yamaguchi, K., Kim, K., Hyojadong, S., Korea, R.: New cucurbituril homologues: syntheses, isolation, characterization, and X-ray crystal structures of cucurbit [n] uril (n) 5, 7, and 8) smart supramolecules and Department of Chemistry Pohang University of Science and Technology Chemical. Anal. J. Am. Chem. Soc. 50, 31–36 (2000)Google Scholar
  34. 34.
    K, C.S., Maverick, B.Y.E., Seller, P., Schweizer, W.B., Dunrrz, J.D.: Acta Cryst. B36, 615–620 (1980)Google Scholar
  35. 35.
    Aree, T., Chaichit, N.: Crystal structure of beta-cyclodextrin-dimethylsulfoxide inclusion complex. Carbohydr. Res. 337, 2487–2494 (2002).  https://doi.org/10.1016/S0008-6215(02)00335-X CrossRefPubMedGoogle Scholar
  36. 36.
    Stewart, J.J.P.: Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. J. Mol. Model. 19, 1–32 (2013).  https://doi.org/10.1007/s00894-012-1667-x CrossRefPubMedGoogle Scholar
  37. 37.
    Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K., Olson, A.J.: Autodock 4.2 (2009)Google Scholar
  38. 38.
    Boys, S.F., Bernardi, F.: The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19, 553–566 (1970)CrossRefGoogle Scholar
  39. 39.
    Bowers, K.J., Chow, E., Xu, H., Dror, R.O., Eastwood, M.P., Gregersen, B.A., Klepeis, J.L., Kolossvary, I., Moraes, M.A., Sacerdoti, F.D., Salmon, J.K., Shan, Y., Shaw, D.E.: Scalable algorithms for molecular dynamics simulations on commodity clusters. In: Proceedings of the ACM/IEEE conference on Supercomputing (SC’06): p. 84., Tampa, Florida (2006)Google Scholar
  40. 40.
    Shaw, D.E.: Desmond Molecular Dynamics System, New York (2009)Google Scholar
  41. 41.
    Mokhtar, M.S., Suliman, F.E.O., Elbashir, A.A.: Experimental and molecular modeling investigations of inclusion complexes of imazapyr with 2-hydroxypropyl(β/γ) cyclodextrin. J. Mol. Liq. 262, 504–513 (2018).  https://doi.org/10.1016/j.molliq.2018.04.088 CrossRefGoogle Scholar
  42. 42.
    Mura, P.: Journal of Pharmaceutical and Biomedical Analysis Analytical techniques for characterization of cyclodextrin complexes in aqueous solution: a review. J. Pharm. Biomed. Anal. 101, 238–250 (2014).  https://doi.org/10.1016/j.jpba.2014.02.022 CrossRefPubMedGoogle Scholar
  43. 43.
    Álvaro-Muñoz, T., López-Arbeloa, F., Pérez-Pariente, J., Gómez-Hortigüela, L.: (1 R,2 S)-ephedrine: a new self-assembling chiral template for the synthesis of aluminophosphate frameworks. J. Phys. Chem. C. 118, 3069–3077 (2014).  https://doi.org/10.1021/jp411124d CrossRefGoogle Scholar
  44. 44.
    Bernardo-Maestro, B., Roca-Moreno, M.D., López-Arbeloa, F., Pérez-Pariente, J., Gómez-Hortigüela, L.: Supramolecular chemistry of chiral (1R,2S)-ephedrine confined within the AFI framework as a function of the synthesis conditions. Catal. Today. 277, 9–20 (2016).  https://doi.org/10.1016/j.cattod.2015.10.010 CrossRefGoogle Scholar
  45. 45.
    Mokhtar, M.S., Suliman, F.O., Elbashir, A.A.: The binding interaction of imazapyr with cucurbit[n]uril (n = 6–8): combined experimental and molecular modeling study. Spectrochim. Acta A (2018).  https://doi.org/10.1016/j.saa.2018.01.007 CrossRefGoogle Scholar
  46. 46.
    Uyar, T., Hunt, M.A., Gracz, H.S., Tonelli, A.E.: Crystalline cyclodextrin inclusion compounds formed with aromatic guests: Guest-dependent stoichiometries and hydration-sensitive crystal structures. Cryst. Growth Des. 6, 1113–1119 (2006).  https://doi.org/10.1021/cg050500&%23x002B; CrossRefGoogle Scholar
  47. 47.
    Lu, T.: Solid-state inclusion compounds of small amphiphilic molecules (C). New J. Chem. 29, 1335–1341 (2005)CrossRefGoogle Scholar
  48. 48.
    Cunha-Silva, L., Teixeira-Dias, J.J.C.: How humidity affects the solid-state inclusion of 2-phenoxyethanol in β-cyclodextrin: a comparison with β-cyclodextrin. New J. Chem. 28, 200–206 (2004).  https://doi.org/10.1039/b309491j CrossRefGoogle Scholar
  49. 49.
    Li, S., Miao, X., Wyman, I.W., Li, Y., Zheng, Y., Wang, Y., Macartney, D.H., Wang, R.: High-affinity host–guest complex of cucurbit[7]uril with a bis(thiazolium) salt. RSC Adv. 5, 56110–56115 (2015).  https://doi.org/10.1039/C5RA04468E CrossRefGoogle Scholar
  50. 50.
    Li, S., Yin, H., Wyman, I.W., Zhang, Q., Macartney, D.H., Wang, R.: Encapsulation of Vitamin B1and its phosphate derivatives by cucurbit[7]uril: tunability of the binding site and affinity by the presence of phosphate groups. J. Org. Chem. 81, 1300–1303 (2016).  https://doi.org/10.1021/acs.joc.5b02666 CrossRefPubMedGoogle Scholar
  51. 51.
    Buchelnikov, A.S., Hernández Santiago, A.A., Starodub, M.A., Mosunov, A.A., Parkinson, J.A., Evstigneev, M.P.: Generalized shape-independent approach to studying molecular hetero-assembly in solution using NMR diffusometry. J. Mol. Liq. 265, 88–95 (2018).  https://doi.org/10.1016/j.molliq.2018.05.106 CrossRefGoogle Scholar
  52. 52.
    Kasprzak, A., Borys, K.M., Molchanov, S., Adamczyk-Woźniak, A.: Spectroscopic insight into supramolecular assemblies of boric acid derivatives and β-cyclodextrin. Carbohydr. Polym. 198, 294–301 (2018).  https://doi.org/10.1016/J.CARBPOL.2018.06.085 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Suad K. S. Al-Burtomani
    • 1
  • FakhrEldin O. Suliman
    • 1
  1. 1.Department of Chemistry, College of ScienceSultan Qaboos UniversityAl-KhodOman

Personalised recommendations