Advertisement

Effect of ZSM5 in the catalytic activity of a fluid catalytic cracking catalyst

  • Nurudeen Salahudeen
Original Article
  • 17 Downloads

Abstract

Effect of Zeolite Socony Mobil-5 (ZSM5) addition on the catalytic performance of fluid catalytic cracking (FCC) catalyst made of zeolite Y and ZSM5 catalyst have been investigated and herein presented. FCC composite catalyst was formulated using as-synthesized zeolite Y and ZSM5. The zeolite materials were anchored on support matrix made of activated alumina, metakaolin and silica sol. The catalyst was characterized using X-ray diffraction, Brunauer–Emmett–Teller (BET) texture analysis, scanning electron microscopy (SEM) and differential/thermogravimetric (DTG/TG) analysis. BET analysis showed that the zeolite synthesized and FCC catalysts formulated were microporous. The catalyst performance in terms of gasoline yield in cracking of n-hexadecane at 400, 500 and 500 °C were 40.7%, 59.5% and 60.0% respectively. Gasoline selectivity at 400, 500 and 500 °C were 76.5%, 81.3% and 67.5% respectively. The gasoline obtained at 400 °C had the least research octane number (RON) value of 51.47%, the RON values at 500 and 550 °C were 85.39% and 87.38% respectively. This study has shown that the optimum operating temperature was 500 °C, and incorporation of ZSM5 in the FCC catalyst formulation improved the gasoline yield of the catalyst by 72%.

Keywords

FCC catalyst Catalytic cracking Gasoline Yield Selectivity RON 

Notes

Acknowledgements

The authors gratefully acknowledge Petroleum Technology Development Fund (PTDF) Abuja, Ahmadu Bello University, Zaria and Sultan Qaboos University, Oman for their contributions in the work.

References

  1. 1.
    Dudley, B.: British Petroleum Plc, London (2013)Google Scholar
  2. 2.
    Trigueiro, F.E., Monteiro, D.F.J., Zotin, F.M.Z.: and E. F. Sousa-Aguiar. J. Alloy. Compd. 344, 337–341 (2002)CrossRefGoogle Scholar
  3. 3.
    Mravec, D., Hudec, J., Janotka, H.: Chemistry Paper 59(1), 62–69 (2005)Google Scholar
  4. 4.
    Zhao, Y., Liu, Z., Li, W., Zhao, Y., Pan, H., Liu, Y., Li, M., Kong, L., He, M.: Microporous Mesoporous Mater. 167, 102–108 (2013)CrossRefGoogle Scholar
  5. 5.
    Charkhi, A., Kazemeini, M., Ahmadi, S.J., Kazemian, H.: Powder Technol. 231, 1–6 (2012)CrossRefGoogle Scholar
  6. 6.
    Zhang, X., Tang, D., Zhang, M., Yang, R.: Powder Technol. 235, 322–328 (2013)CrossRefGoogle Scholar
  7. 7.
    Galadima, A., Muraza, O.: J. Ind. Eng. Chem. 31, 1–14 (2015)CrossRefGoogle Scholar
  8. 8.
    David, T.W.: AU Journal of Tchnology 11(1), 36–41 (2007)Google Scholar
  9. 9.
    Abou-Yousef, H., Hassan, E.B.: J. Ind. Eng. Chem. 20, 4: 1952–1957 (2014)CrossRefGoogle Scholar
  10. 10.
    Rahimi, N., Karimzadeh, R.: Appl. Catal. A 398, 1–17 (2011)CrossRefGoogle Scholar
  11. 11.
    Ruren, X., Gao, Z., Chen, J., Wenfu, Y.: Amsterdam, Netherlands, Elsevier, (2007): 168–414Google Scholar
  12. 12.
    Zhang, Z., Li, L., He, D., Ma, X., Yan, C., Wang, H.: Mater. Lett. 178, 151–154 (2016)CrossRefGoogle Scholar
  13. 13.
    Chen, W., Han, D., Sun, X., Li, C.: Fuel 106, 498–504 (2013)CrossRefGoogle Scholar
  14. 14.
    Nam, L.T.H., Vinh, T.Q., Loan, N.T.T., Tho, V.D.S., Yang, V., Su, B.: Fuel 90, 1069–1075 (2011)CrossRefGoogle Scholar
  15. 15.
    Stonoga, A., Silva, V., Weinschutz, R., Yamamoto, C.I., Jr, F.L.L.: Fuel 106, 632–638 (2013)CrossRefGoogle Scholar
  16. 16.
    Salahudeen, N., Ahmed, A.S., Al-Muhtaseb, A.H., Dauda, M., Jibril, B.Y., Viswanadham, N., Saxena, S.: Res. Chem. Intermed. 43, 1: 467–471 (2017)CrossRefGoogle Scholar
  17. 17.
    Abbasov, V., Mammadova, T., Andrushenko, N., Hasankhanova, N., Lvov, Y., Abdullayev, E.: Fuel 117, 552–555 (2014)CrossRefGoogle Scholar
  18. 18.
    Ginter, D.M., Bell, A.T., Radke, C.J.: Van Nostrand Reinhold, New York, 1992Google Scholar
  19. 19.
    Salahudeen, N., Ahmed, A.S.: J. Incl. Phenom. Macrocycl. Chem. 87, 1: 149–156 (2017)CrossRefGoogle Scholar
  20. 20.
    Lisensky, G., Blitz, I.: the Board of Regents of the University of Wisconsin System. http://chemistry.binghamton.edu/chem445/ZSM5/ZSM5.htm
  21. 21.
    Yunusa, S., Ahmed, A.S., Yusuf, M.: Book of Abstract of the 6th Federation of European Zeolite Association (FEZA) Conference, held on 8–11th September, 2014, at Universitat Leipzig, Germany. p. 397Google Scholar
  22. 22.
    Sandeep, K., Saxena, M.K., Nagabhatla, V.: Journal of Material Science 48, 7949–7959 (2013)CrossRefGoogle Scholar
  23. 23.
    Harry, R.: Synthesis Commission of the International Zeolite Association. Elsevier, Amsterdam (2001)Google Scholar
  24. 24.
    Treacy, M.M.J., Higgins, J.B.: Elsevier, Amsterdam, Netherlands, 2001Google Scholar
  25. 25.
    Jiang, J., Duanmu, C., Yang, Y., Gu, X., Chen, J.: Powder Technol. 251, 9–14 (2014)CrossRefGoogle Scholar
  26. 26.
    Ghosh, P., Hickey, K.J., Jaffe, S.B.: Ind. Eng. Chem. Res. 45, 337–345 (2006)CrossRefGoogle Scholar
  27. 27.
    Knop, V., Loos, M., Pera, C., Jeuland, N.: Fuel 115, 666–673 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Chemical and Petroleum EngineeringBayero UniversityKanoNigeria

Personalised recommendations