Advertisement

Control releasing 5-aminosalicylic acid using pH-sensitive hydrogel with novel albumin cross-linker

  • Kayvan Habibi
  • Manouchehr Mamaghani
  • Mohammad Nikpassand
Original Article
  • 51 Downloads

Abstract

Intelligent drug delivery systems are growing and changing too fast, these systems usually show a proper response at the proper time to one or several environmental factors. In the current research a biodegradable drug delivery system (pectin-g-PMA-co-PAAm) was designed and synthesized to release 5 aminosalicylic acid (5-ASA). The synthesized hydrogel is based on natural pectin and is in the form of simultaneous graft copolymerization of synthesized acryl-acid and acryl-amid. Using vinylized bovine serum albumin (VBSA) as cross linker agent is amongst important characteristics of this hydrogel. VBSA was synthesized through BSA modification with methylene-bis-acrylamide (MBA). In addition to having high water absorption, this hydrogel is pH-sensitive. In vitro tests under acid and base conditions of stomach show that this hydrogel is an appropriate option to release drugs through mouth. SEM analysis images show that synthesized hydrogel has a porous surface composed of nano and micro cavities.

Keywords

Hydrogel Drug delivery BSA Albumin 

References

  1. 1.
    Hoffman, A.S.: Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 64, 18–23 (2012)CrossRefGoogle Scholar
  2. 2.
    Ahmed, E.M.: Hydrogel: preparation, characterization, and applications: a review. J. Adv. Res. 6, 105–121 (2015)CrossRefGoogle Scholar
  3. 3.
    Wood, D.A.: Biodegradable drug delivery systems. Int. J. Pharm. 7, 1–18 (1980)CrossRefGoogle Scholar
  4. 4.
    Sajilata, M.G., Singhal, R.S., Kulkarni, P.R.: Resistant starch—a review. Compr. Rev. Food Sci. Food Saf. 5, 1–17 (2006)CrossRefGoogle Scholar
  5. 5.
    Kabiri, K., Omidian, H., Zohuriaan-Mehr, M., Doroudiani, S.: Superabsorbent hydrogel composites and nanocomposites: a review. PoCom 32, 277–289 (2011)Google Scholar
  6. 6.
    Lu, D., Xiao, C., Xu, S.: Starch-based completely biodegradable polymer materials. Express Polym. Lett. 3, 366–375 (2009)CrossRefGoogle Scholar
  7. 7.
    Huynh, D.P., Nguyen, M.K., Pi, B.S., Kim, M.S., Chae, S.Y., Lee, K.C., Kim, B.S., Kim, S.W., Lee, D.S.: Functionalized injectable hydrogels for controlled insulin delivery. Biomaterials 29, 2527–2534 (2008)CrossRefGoogle Scholar
  8. 8.
    Deshpande, A., Rhodes, C., Shah, N., Malick, A.: Controlled-release drug delivery systems for prolonged gastric residence: an overview. Drug Dev. Ind. Pharm. 22, 531–539 (1996)CrossRefGoogle Scholar
  9. 9.
    Xu, Y., Li, J.-J., Yu, D.-G., Williams, G.R., Yang, J.-H., Wang, X.: Influence of the drug distribution in electrospun gliadin fibers on drug-release behavior. Eur. J. Pharm. Sci. 106, 422–430 (2017)CrossRefGoogle Scholar
  10. 10.
    Satarkar, N.S., Biswal, D., Hilt, J.Z.: Hydrogel nanocomposites: a review of applications as remote controlled biomaterials. Soft Matter 6, 2364–2371 (2010)CrossRefGoogle Scholar
  11. 11.
    Billiet, T., Vandenhaute, M., Schelfhout, J., Van Vlierberghe, S., Dubruel, P.: A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33, 6020–6041 (2012)CrossRefGoogle Scholar
  12. 12.
    Hamidi, M., Azadi, A., Rafiei, P.: Hydrogel nanoparticles in drug delivery. Adv. Drug Deliv. Rev. 60, 1638–1649 (2008)CrossRefGoogle Scholar
  13. 13.
    da Silva, J., Lautenschläger, F., Sivaniah, E., Guck, J.R.: The cavity-to-cavity migration of leukaemic cells through 3D honey-combed hydrogels with adjustable internal dimension and stiffness. Biomaterials 31, 2201–2208 (2010)CrossRefGoogle Scholar
  14. 14.
    Yoshida, R., Uchida, K., Kaneko, Y., Sakai, K., Kikuchi, A., Sakurai, Y., Okano, T.: Comb-type grafted hydrogels with rapid deswelling response to temperature changes. Nature 374, 240–242 (1995)CrossRefGoogle Scholar
  15. 15.
    Dogué, I.L.J., Förch, R., Mermilliod, N.: Plasma-induced hydrogel grafting of vinyl monomers on polypropylene. J. Adhes. Sci. Technol. 9, 1531–1545 (1995)CrossRefGoogle Scholar
  16. 16.
    Mishra, R.K., Datt, M., Banthia, A.K.: Synthesis and characterization of pectin/PVP hydrogel membranes for drug delivery system. Aaps Pharmscitech 9, 395–403 (2008)CrossRefGoogle Scholar
  17. 17.
    Kamath, K.R., Park, K.: Biodegradable hydrogels in drug delivery. Adv. Drug Deliv. Rev. 11, 59–84 (1993)CrossRefGoogle Scholar
  18. 18.
    Hoare, T.R., Kohane, D.S.: Hydrogels in drug delivery: progress and challenges. Polymer 49, 1993–2007 (2008)CrossRefGoogle Scholar
  19. 19.
    Mohnen, D.: Pectin structure and biosynthesis. Curr. Opin. Plant Biol. 11, 266–277 (2008)CrossRefGoogle Scholar
  20. 20.
    Mishra, R., Banthia, A., Majeed, A.: Pectin based formulations for biomedical applications: a review. Asian J. Pharm. Clin. Res. 5, 1–7 (2012)Google Scholar
  21. 21.
    Giri, T.K., Thakur, D., Alexander, A., Badwaik, H., Tripathy, M., Tripathi, D.K.: Biodegradable IPN hydrogel beads of pectin and grafted alginate for controlled delivery of diclofenac sodium. JMSMM 24, 1179–1190 (2013)CrossRefGoogle Scholar
  22. 22.
    Chang, A.: pH-sensitive starch-g-poly (acrylic acid)/sodium alginate hydrogels for controlled release of diclofenac sodium. Iran. Polym. J. 24, 161–169 (2015)CrossRefGoogle Scholar
  23. 23.
    Kamoun, E.A., Chen, X., Eldin, M.S.M., Kenawy, E.-R.S.: Crosslinked poly (vinyl alcohol) hydrogels for wound dressing applications: a review of remarkably blended polymers. Arab. J. Chem. 8, 1–14 (2015)CrossRefGoogle Scholar
  24. 24.
    Qiu, Y., Park, K.: Environment-sensitive hydrogels for drug delivery. Adv. Drug Del. Rev. 53, 321–339 (2001)CrossRefGoogle Scholar
  25. 25.
    Hennink, W., Van Nostrum, C.F.: Novel crosslinking methods to design hydrogels. Adv. Drug Del. Rev. 64, 223–236 (2012)CrossRefGoogle Scholar
  26. 26.
    Tada, D., Tanabe, T., Tachibana, A., Yamauchi, K.: Drug release from hydrogel containing albumin as crosslinker. J. Biosci. Bioeng. 100, 551–555 (2005)CrossRefGoogle Scholar
  27. 27.
    Rafiqul, I., Sakinah, A.M.: Design of process parameters for the production of xylose from wood sawdust. Chem. Eng. Res. Des. 90, 1307–1312 (2012)CrossRefGoogle Scholar
  28. 28.
    Fares, M.M., Assaf, S.M., Abul-Haija, Y.M.: Pectin grafted poly (N-vinylpyrrolidone): Optimization and in vitro controllable theophylline drug release. J. Appl. Polym. Sci. 117, 1945–1954 (2010)CrossRefGoogle Scholar
  29. 29.
    Ma, X., Wei, R., Cheng, J., Cai, J., Zhou, J.: Synthesis and characterization of pectin/poly (sodium acrylate) hydrogels. Carbohydr. Polym. 86, 313–319 (2011)CrossRefGoogle Scholar
  30. 30.
    Wang, Y., Burgess, D.J.: Influence of storage temperature and moisture on the performance of microsphere/hydrogel composites. Int. J. Pharm. 454, 310–315 (2013)CrossRefGoogle Scholar
  31. 31.
    Teijon, J., Trigo, R., Garcia, O., Blanco, M.: Cytarabine trapping in poly (2-hydroxyethyl methacrylate) hydrogels: drug delivery studies. Biomaterials 18, 383–388 (1997)CrossRefGoogle Scholar
  32. 32.
    Yu, D.-G., Li, J.-J., Zhang, M., Williams, G.R.: High-quality Janus nanofibers prepared using three-fluid electrospinning. ChCom 53, 4542–4545 (2017)Google Scholar
  33. 33.
    Wang, K., Wen, H.-F., Yu, D.-G., Yang, Y., Zhang, D.-F.: Electrosprayed hydrophilic nanocomposites coated with shellac for colon-specific delayed drug delivery. Mater. Des. 143, 248–255 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Kayvan Habibi
    • 1
  • Manouchehr Mamaghani
    • 1
  • Mohammad Nikpassand
    • 1
  1. 1.Chemistry DepartmentIslamic Azad University of RashtRashtIran

Personalised recommendations