Advertisement

Development of cyclodextrin-based extract of Lotus corniculatus as a potential substrate reduction therapy in mucopolysaccharidoses type III

  • Barbara Fumić
  • Marijana Zovko Končić
  • Mario Jug
Original Article
  • 34 Downloads

Abstract

A novel sustainable and eco-friendly procedure simultaneously combining the use of ultrasound irradiation and hydroxypropyl-β-cyclodextrin (HPβCD) complexation was used to extract phytochemicals from Lotus corniculatus and to prepare flavonoid rich extract having potential as substrate reduction therapy of mucopolysaccharidosis type III (MPS III), a rare autosomal recessive lysosomal storage disorder. For that instance, Box-Behnken design and response surface methodology was employed to statistically assess the influence of HPβCD concentration, ultrasonic power, and extraction time on the total phenolic compounds, total flavonoids, total phenolic acids and radical scavenging activity (RSA) of the extracts prepared, chosen as the responses indicative of the product quality and performance. The potential of such optimised extract to modulate accumulation of gylcosoaminoglycans (GAGs) was evaluated on the fibroblast obtained from patients suffering from MPS type III. Optimized extract prepared by 45 min extraction using HPβCD at concentration of 20 mM and ultrasonic irradiation of 648 W was rich in flavonoids (1.36 mg/mL) and showed notable RSA of 1.04 mg/mL. Freeze-dried extract, at concentration of 3 and 6 µg/mL, reduced GAG levels in skin fibroblasts by 33.97 and 50.08%, respectively, without any toxic effects at given doses, showing a potential to be considered as a part of the substrate reduction therapy of MPS III.

Keywords

Lotus corniculatus Hydroxypropyl-β-cyclodextrin Polyphenols Flavonoids Radical scavenging activity Glycosoaminoglycans 

Notes

Acknowledgements

Authors are thankful to Vedran Šegota, an expert associate of Herbarium Croaticum at Division of Botany, Department of Biology, Faculty of Science, University of Zagreb for the help in identification of the plant material. The financial support of University of Zagreb in the frame of the project Isolation and modulation of antioxidative properties of plant polyphenols by the use of cyclodextrins (Grant No. BM1.10) is kindly acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The research was performed in accordance with ethical committee approval (Class: 643-03/l4-QL/04; No. 251-62-03-L4-33; Zagreb, 16 May 2014).

References

  1. 1.
    Nijmeijer, S.C.M., Wijburg, F.A.: Mucopolysaccharidosis type III: current clinical trials, challenges and recommendations. Expert Opin. Orphan Drugs 6, 9–15 (2018).  https://doi.org/10.1080/21678707.2018.1411797 CrossRefGoogle Scholar
  2. 2.
    Gaffke, L., Pierzynowska, K., Piotrowska, E., Węgrzyn, G.: How close are we to therapies for Sanfilippo disease? Metab. Brain Dis. (2017).  https://doi.org/10.1007/s11011-017-0111-4 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Fedele, A.: Sanfilippo syndrome: causes, consequences, and treatments. Appl. Clin. Genet. 8, 269 (2015).  https://doi.org/10.2147/TACG.S57672 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Malinowska, M., Wilkinson, F.L., Langford-Smith, K.J., Langford-Smith, A., Brown, J.R., Crawford, B.E., Vanier, M.T., Grynkiewicz, G., Wynn, R.F., Wraith, J.E., Wegrzyn, G., Bigger, B.W.: Genistein improves neuropathology and corrects behaviour in a mouse model of neurodegenerative metabolic disease. PLoS ONE 5, e14192 (2010).  https://doi.org/10.1371/journal.pone.0014192 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kloska, A., Jakóbkiewicz-Banecka, J., Narajczyk, M., Banecka-Majkutewicz, Z., Wȩgrzyn, G.: Effects of flavonoids on glycosaminoglycan synthesis: implications for substrate reduction therapy in Sanfilippo disease and other mucopolysaccharidoses. Metab. Brain Dis. 26, 1–8 (2011).  https://doi.org/10.1007/s11011-011-9233-2 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Moskot, M., Jakóbkiewicz-Banecka, J., Kloska, A., Smolińska, E., Mozolewski, P., Malinowska, M., Rychłowski, M., Banecki, B., Węgrzyn, G., Gabig-Cimińska, M.: Modulation of expression of genes involved in glycosaminoglycan metabolism and lysosome biogenesis by flavonoids. Sci. Rep. 5, 9378 (2015).  https://doi.org/10.1038/srep09378 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Arfi, A., Richard, M., Gandolphe, C., Scherman, D.: Storage correction in cells of patients suffering from mucopolysaccharidoses types IIIA and VII after treatment with genistein and other isoflavones. J. Inherit. Metab. Dis. 33, 61–67 (2010).  https://doi.org/10.1007/s10545-009-9029-2 CrossRefPubMedGoogle Scholar
  8. 8.
    Fumić, B., Končić, M.Z., Jug, M.: Therapeutic potential of hydroxypropyl-β-cyclodextrin-based extract of medicago sativa in the treatment of mucopolysaccharidoses. Planta Med. (2017).  https://doi.org/10.1055/s-0042-107357 CrossRefPubMedGoogle Scholar
  9. 9.
    Fumić, B., Jablan, J., Cinčić, D., Zovko Končić, M., Jug, M.: Cyclodextrin encapsulation of daidzein and genistein by grinding: implication on the glycosaminoglycan accumulation in mucopolysaccharidosis type II and III fibroblasts. J. Microencapsul. 35, 1–12 (2018).  https://doi.org/10.1080/02652048.2017.1409819 CrossRefPubMedGoogle Scholar
  10. 10.
    Escaray, F.J., Passeri, V., Perea-García, A., Antonelli, C.J., Damiani, F., Ruiz, O.A., Paolocci, F.: The R2R3-MYB TT2b and the bHLH TT8 genes are the major regulators of proanthocyanidin biosynthesis in the leaves of Lotus species. Planta 246, 243–261 (2017).  https://doi.org/10.1007/s00425-017-2696-6 CrossRefPubMedGoogle Scholar
  11. 11.
    Vuckovic, S., Stojanovic, I., Prodanovic, S., Cupina, B., Zivanovic, T., Vojin, S., Jelacic, S.: Morphological and nutritional properties of birdsfoot trefoil (Lotus corniculatus L.) autochthonous populations in serbia and bosnia and herzegovina. Genet. Resour. Crop Evol. 54, 421–428 (2007).  https://doi.org/10.1007/s10722-006-0004-6 CrossRefGoogle Scholar
  12. 12.
    Marley, C.L., Cook, R., Keatinge, R., Barrett, J., Lampkin, N.H.: The effect of birdsfoot trefoil (Lotus corniculatus) and chicory (Cichorium intybus) on parasite intensities and performance of lambs naturally infected with helminth parasites. Vet. Parasitol. 112, 147–155 (2003).  https://doi.org/10.1016/S0304-4017(02)00412-0 CrossRefPubMedGoogle Scholar
  13. 13.
    Reynaud, J., Lussignol, M.: The flavonoids of Lotus corniculatus. Lotus Newsl. 35, 75–82 (2005)Google Scholar
  14. 14.
    Koelzer, J., Pereira, D.A., Dalmarco, J.B., Pizzolatti, M.G., Fröde, T.S.: Evaluation of the anti-inflammatory efficacy of Lotus corniculatus. Food Chem. 117, 444–450 (2009).  https://doi.org/10.1016/j.foodchem.2009.04.044 CrossRefGoogle Scholar
  15. 15.
    Pereira, D.A., Dalmarco, J.B., Wisniewski, A., Simionatto, E.L., Pizzolatti, M.G., Fröde, T.S.: Lotus corniculatus regulates the inflammation induced by bradykinin in a murine model of pleurisy. J. Agric. Food Chem. 59, 2291–2298 (2011).  https://doi.org/10.1021/jf103997s CrossRefPubMedGoogle Scholar
  16. 16.
    Sarelli, L., Tuori, M., Saastamoinen, I., Syrjälä-qvist, L., Saloniemi, H.: Phytoestrogen content of birdsfoot trefoil and red clover: effects of growth stage and ensiling method. Acta Agric. Scand. A 53, 58–63 (2003).  https://doi.org/10.1080/09064700310002053 CrossRefGoogle Scholar
  17. 17.
    Dalmarco, J.B., Dalmarco, E.M., Koelzer, J., Pizzolatti, M.G., Fröde, T.S.: Isolation and identification of bioactive compounds responsible for the anti-bacterial efficacy of Lotus corniculatus var. São Gabriel. Int. J. Green Pharm. (2010).  https://doi.org/10.22377/IJGP.V4I2.130 CrossRefGoogle Scholar
  18. 18.
    Girardi, F.A., Tonial, F., Chini, S.O., Sobottka, A.M., Scheffer-Basso, S.M., Bertol, C.D.: Phytochemical profile and antimicrobial properties of Lotus spp. (Fabaceae). An. Acad. Bras. Cienc. 86, 1295–1302 (2014).  https://doi.org/10.1590/0001-3765201420130220 CrossRefPubMedGoogle Scholar
  19. 19.
    Rafiq, S., Majeed, R., Qazi, A.K., Ganai, B.A., Wani, I., Rakhshanda, S., Qurishi, Y., Sharma, P.R., Hamid, A., Masood, A., Hamid, R.: Isolation and antiproliferative activity of Lotus corniculatus lectin towards human tumour cell lines. Phytomedicine 21, 30–38 (2013).  https://doi.org/10.1016/j.phymed.2013.08.005 CrossRefPubMedGoogle Scholar
  20. 20.
    Cornara, L., Xiao, J., Burlando, B.: Therapeutic potential of temperate forage legumes: a review. Crit. Rev. Food Sci. Nutr. 56, S149–S161 (2016).  https://doi.org/10.1080/10408398.2015.1038378 CrossRefPubMedGoogle Scholar
  21. 21.
    Chemat, F., Rombaut, N., Sicaire, A.-G.G., Meullemiestre, A., Fabiano-Tixier, A.-S.S., Abert-Vian, M.: Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 34, 540–560 (2017).  https://doi.org/10.1016/j.ultsonch.2016.06.035 CrossRefPubMedGoogle Scholar
  22. 22.
    Pinho, E., Grootveld, M., Soares, G., Henriques, M.: Cyclodextrins as encapsulation agents for plant bioactive compounds. Carbohydr. Polym. 101, 121–135 (2014).  https://doi.org/10.1016/j.carbpol.2013.08.078 CrossRefPubMedGoogle Scholar
  23. 23.
    Suvarna, V., Gujar, P., Murahari, M.: Complexation of phytochemicals with cyclodextrin derivatives—an insight. Biomed. Pharmacother. 88, 1122–1144 (2017).  https://doi.org/10.1016/j.biopha.2017.01.157 CrossRefPubMedGoogle Scholar
  24. 24.
    Yolmeh, M., Jafari, S.M.: Applications of response surface methodology in the food industry processes. Food Bioprocess. Technol. 10, 413–433 (2017).  https://doi.org/10.1007/s11947-016-1855-2 CrossRefGoogle Scholar
  25. 25.
    Singleton, V.L., Orthofer, R., Lamuela-Raventós, R.M.: Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 299, 152–178 (1999).  https://doi.org/10.1016/S0076-6879(99)99017-1 CrossRefGoogle Scholar
  26. 26.
    Kumazawa, S., Hamasaka, T., Nakayama, T.: Antioxidant activity of propolis of various geographic origins. Food Chem. 84, 329–339 (2004).  https://doi.org/10.1016/S0308-8146(03)00216-4 CrossRefGoogle Scholar
  27. 27.
    Nicolle, C., Carnat, A., Fraisse, D., Lamaison, J.-L., Rock, E., Michel, H., Amouroux, P., Remesy, C.: Characterisation and variation of antioxidant micronutrients in lettuce (Lactuca sativa folium). J. Sci. Food Agric. 84, 2061–2069 (2004).  https://doi.org/10.1002/jsfa.1916 CrossRefGoogle Scholar
  28. 28.
    Jug, M., Končić, M.Z., Kosalec, I.: Modulation of antioxidant, chelating and antimicrobial activity of poplar chemo-type propolis by extraction procures. LWT Food Sci. Technol. (2014).  https://doi.org/10.1016/j.lwt.2014.02.006 CrossRefGoogle Scholar
  29. 29.
    Ceylan, O., Sahin, M.D., Akdamar, G.: Antioxidant and anti-quorum sensing potential of Acer monspessulanum subsp. monspessulanum extracts. Planta Med. 82, 1335–1340 (2016).  https://doi.org/10.1055/s-0042-105294 CrossRefPubMedGoogle Scholar
  30. 30.
    Končić, M.Z., Barbarić, M., Perković, I., Zorc, B., Končić, M.Z., Barbarić, M., Perković, I., Zorc, B.: Antiradical, chelating and antioxidant activities of hydroxamic acids and hydroxyureas. Molecules 16, 6232–6242 (2011).  https://doi.org/10.3390/molecules16086232 CrossRefPubMedGoogle Scholar
  31. 31.
    Martin, L.M., Castilho, M.C., Silveira, M.I., Abreu, J.M.: Liquid chromatographic validation of a quantitation method for phytoestrogens, biochanin-A, coumestrol, daidzein, formononetin, and genistein in lucerne. J. Liq. Chromatogr. Relat. Technol. 29, 2875–2884 (2006).  https://doi.org/10.1080/10826070600961076 CrossRefGoogle Scholar
  32. 32.
    Kleinschmidt, G.: Case study: validation of an HPLC-method for identity, assay, and related impurities. In: Ermer, J., Miller, J.H.M. (eds.) Method Validation in Pharmaceutical Analysis, pp. 195–212. Wiley, Weinheim (2005)CrossRefGoogle Scholar
  33. 33.
    Farndale, R.W., Buttle, D.J., Barrett, A.J.: Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim. Biophys. Acta 883, 173–177 (1986).  https://doi.org/10.1016/0304-4165(86)90306-5 CrossRefPubMedGoogle Scholar
  34. 34.
    Kim, Y.-J., Sah, R.L.Y., Doong, J.-Y.H., Grodzinsky, A.J.: Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal. Biochem. 174, 168–176 (1988).  https://doi.org/10.1016/0003-2697(88)90532-5 CrossRefPubMedGoogle Scholar
  35. 35.
    Das, A.K., Mandal, V., Mandal, S.C.: A brief understanding of process optimisation in microwave-assisted extraction of botanical materials: options and opportunities with chemometric tools. Phytochem. Anal. 25, 1–12 (2014).  https://doi.org/10.1002/pca.2465 CrossRefPubMedGoogle Scholar
  36. 36.
    Pérez-Abril, M., Lucas-Abellán, C., Castillo-Sánchez, J., Pérez-Sánchez, H., Cerón-Carrasco, J.P., Fortea, I., Gabaldón, J.A., Núñez-Delicado, E.: Systematic investigation and molecular modelling of complexation between several groups of flavonoids and HP-β-cyclodextrins. J. Funct. Foods. 36, 122–131 (2017).  https://doi.org/10.1016/j.jff.2017.06.052 CrossRefGoogle Scholar
  37. 37.
    Zhang, H.J., Liu, Y.N., Wang, M., Wang, Y.F., Deng, Y.R., Cui, M.L., Ren, X.L., Qi, A., Di: One-pot β-cyclodextrin-assisted extraction of active ingredients from Xue-Zhi-Ning basing its encapsulated ability. Carbohydr. Polym. 132, 437–443 (2015).  https://doi.org/10.1016/j.carbpol.2015.06.072 CrossRefPubMedGoogle Scholar
  38. 38.
    Mourtzinos, I., Anastasopoulou, E., Petrou, A., Grigorakis, S., Makris, D., Biliaderis, C.G.: Optimization of a green extraction method for the recovery of polyphenols from olive leaf using cyclodextrins and glycerin as co-solvents. J. Food Sci. Technol. 53, 3939–3947 (2016).  https://doi.org/10.1007/s13197-016-2381-y CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Jansook, P., Loftsson, T.: CDs as solubilizers: effects of excipients and competing drugs. Int. J. Pharm. 379, 32–40 (2009).  https://doi.org/10.1016/j.ijpharm.2009.06.005 CrossRefPubMedGoogle Scholar
  40. 40.
    Diamanti, A.C., Igoumenidis, P.E., Mourtzinos, I., Yannakopoulou, K., Karathanos, V.T.: Green extraction of polyphenols from whole pomegranate fruit using cyclodextrins. Food Chem. 214, 61–66 (2017).  https://doi.org/10.1016/j.foodchem.2016.07.072 CrossRefPubMedGoogle Scholar
  41. 41.
    Kowalski, S., Lukasiewicz, M.: Application of randomly methylated cyclodextrin in extraction of antioxidant-like compounds from bee bread. J. Food Nutr. Res. 56, 121–128 (2017)Google Scholar
  42. 42.
    Mura, M., Palmieri, D., Garella, D., Di Stilo, A., Perego, P., Cravotto, G., Palombo, D.: Simultaneous ultrasound-assisted water extraction and β-cyclodextrin encapsulation of polyphenols from Mangifera indica stem bark in counteracting TNFα-induced endothelial dysfunction. Nat. Prod. Res. 29, 1657–1663 (2015).  https://doi.org/10.1080/14786419.2014.996753 CrossRefPubMedGoogle Scholar
  43. 43.
    Parmar, I., Sharma, S., Rupasinghe, H.P.V.: Optimization of β-cyclodextrin-based flavonol extraction from apple pomace using response surface methodology. J. Food Sci. Technol. 52, 2202–2210 (2015).  https://doi.org/10.1007/s13197-014-1282-1 CrossRefPubMedGoogle Scholar
  44. 44.
    Pinho, E., Soares, G., Henriques, M.: Evaluation of antibacterial activity of caffeic acid encapsulated by β-cyclodextrins. J. Microencapsul. 32, 804–810 (2015).  https://doi.org/10.3109/02652048.2015.1094531 CrossRefPubMedGoogle Scholar
  45. 45.
    Mota, F.L., Queimada, A.J., Pinho, S.P., Macedo, E.A.: Aqueous solubility of some natural phenolic compounds. Ind. Eng. Chem. Res. 47, 5182–5189 (2008).  https://doi.org/10.1021/ie071452o CrossRefGoogle Scholar
  46. 46.
    Skenderidis, P., Petrotos, K., Giavasis, I., Hadjichristodoulou, C., Tsakalof, A.: Optimization of ultrasound assisted extraction of of goji berry (Lycium barbarum) fruits and evaluation of extracts’ bioactivity. J. Food Process Eng. 40, e12522 (2017).  https://doi.org/10.1111/jfpe.12522 CrossRefGoogle Scholar
  47. 47.
    Rawson, A., Tiwari, B.K., Patras, A., Brunton, N., Brennan, C., Cullen, P.J., O’Donnell, C.: Effect of thermosonication on bioactive compounds in watermelon juice. Food Res. Int. 44, 1168–1173 (2011).  https://doi.org/10.1016/J.FOODRES.2010.07.005 CrossRefGoogle Scholar
  48. 48.
    Wang, J., Ma, H., Pan, Z., Qu, W.: Sonochemical effect of flat sweep frequency and pulsed ultrasound (FSFP) treatment on stability of phenolic acids in a model system. Ultrason. Sonochem. 39, 707–715 (2017).  https://doi.org/10.1016/J.ULTSONCH.2017.05.034 CrossRefPubMedGoogle Scholar
  49. 49.
    Pingret, D., Fabiano-Tixier, A.-S., Chemat, F.: Degradation during application of ultrasound in food processing: a review. Food Control. 31, 593–606 (2013).  https://doi.org/10.1016/J.FOODCONT.2012.11.039 CrossRefGoogle Scholar
  50. 50.
    Kaiser, S., Verza, S.G., Moraes, R.C., Pittol, V., Peñaloza, E.M.C., Pavei, C., Ortega, G.G.: Extraction optimization of polyphenols, oxindole alkaloids and quinovic acid glycosides from cat’s claw bark by Box–Behnken design. Ind. Crops Prod. 48, 153–161 (2013).  https://doi.org/10.1016/J.INDCROP.2013.04.026 CrossRefGoogle Scholar
  51. 51.
    Moyano-Mendez, J.R., Fabbrocini, G., De Stefano, D., Mazzella, C., Mayol, L., Scognamiglio, I., Carnuccio, R., Ayala, F., La Rotonda, M.I., De Rosa, G.: Enhanced antioxidant effect of trans -resveratrol: potential of binary systems with polyethylene glycol and cyclodextrin. Drug Dev. Ind. Pharm. 40, 1300–1307 (2014).  https://doi.org/10.3109/03639045.2013.817416 CrossRefPubMedGoogle Scholar
  52. 52.
    Trudel, S., Trécherel, E., Gomila, C., Peltier, M., Aubignat, M., Gubler, B., Morlière, P., Heard, J.-M., Ausseil, J.: Oxidative stress is independent of inflammation in the neurodegenerative sanfilippo syndrome type B. J. Neurosci. Res. 93, 424–432 (2015).  https://doi.org/10.1002/jnr.23497 CrossRefPubMedGoogle Scholar
  53. 53.
    Coutinho, M.F., Santos, J.I., Alves, S.: Less is more: substrate reduction therapy for lysosomal storage disorders. Int. J. Mol. Sci. 17, 1065–1087 (2016).  https://doi.org/10.3390/ijms17071065 CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.XelliaZagrebCroatia
  2. 2.Department of Pharmacognosy, Faculty of Pharmacy and BiochemistryUniversity of ZagrebZagrebCroatia
  3. 3.Department of Pharmaceutical Technology, Faculty of Pharmacy and BiochemistryUniversity of ZagrebZagrebCroatia

Personalised recommendations