Advertisement

Structural diversity of metal–organic frameworks via employment of azamacrocycles as a building block

  • Jae Hwa Lee
  • Hoi Ri MoonEmail author
Review Article
  • 112 Downloads

Abstract

Research on incorporating macrocycles into metal–organic frameworks (MOFs) has been performed intensively due to the opportunities afforded by merging a merit of macrocycles with MOF chemistry, which lead to novel hybrid materials for potential application. Among the numerous kinds of macrocycles, azamacrocycles are used as traditional and popular chelating agents in supramolecular coordination chemistry, because they are very easily functionalized by joining pendant arms and possess a strong propensity to complex metal cations, accounting for the amine functionalities. With this as background, many types of azamacrocyclic MOFs have been synthesized, granting compositionally and topologically new MOFs. The macrocyclic rings can serve as additional adsorption sites or catalytic sites, and the pendant arms on the macrocycles can also play versatile roles such as structure-directing agents, pore-decorating moieties, or rotatable molecular gates for opening/closing pores. In this review, we comprehensively discuss the syntheses, structures, and features of azamacrocyclic MOFs reported to date. Based on representative studies, advantages of these compounds are described, such as how the azamacrocycles increase the structural diversity and complexity of the MOFs and induce novel structural properties within the architectures.

Keywords

Metal–organic frameworks Azamacrocycles Pendant arms Structural control Open metal sites Flexibility 

Notes

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Ministry of Science and ICT (No. NRF-2016R1A5A1009405, and NRF-2017R1A2B4008757). J.H.L. acknowledges the Global Ph.D. Fellowship (NRF-2013H1A2A1033501).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they do not have any conflict of interest.

References

  1. 1.
    Furukawa, H., Cordova, K.E., O’Keeffe, M., Yaghi, O.M.: The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013)CrossRefGoogle Scholar
  2. 2.
    Suh, M.P., Cheon, Y.E., Lee, E.Y.: Synthesis and functions of porous metallosupramolecular networks. Coord. Chem. Rev. 252, 1007–1026 (2008)CrossRefGoogle Scholar
  3. 3.
    Li, B., Chrzanowski, M., Zhang, Y., Ma, S.: Applications of metal-organic frameworks featuring multi-functional sites. Coord. Chem. Rev. 307, 106–129 (2016)CrossRefGoogle Scholar
  4. 4.
    Lee, K.J., Lee, J.H., Jeoung, S., Moon, H.R.: Transformation of metal–organic frameworks/coordination polymers into functional nanostructured materials: experimental approaches based on mechanistic insights. Acc. Chem. Res. 50, 2684–2692 (2017)CrossRefGoogle Scholar
  5. 5.
    Lama, P., Aggarwal, H., Bezuidenhout, C.X., Barbour, L.J.: Giant hysteretic sorption of CO2: in situ crystallographic visualization of guest binding within a breathing framework at 298 K. Angew. Chem. Int. Ed. 55, 13271–13275 (2016)CrossRefGoogle Scholar
  6. 6.
    Kim, J.Y., Balderas-Xicohténcatl, R., Zhang, L., Kang, S.G., Hirscher, M., Oh, H., Moon, H.R.: Exploiting diffusion barrier and chemical affinity of metal–organic frameworks for efficient hydrogen isotope separation. J. Am. Chem. Soc. 139, 15135–15141 (2017)CrossRefGoogle Scholar
  7. 7.
    Kim, J.Y., Zhang, L., Balderas-Xicohténcatl, R., Pack, J., Hirscher, M., Moon, H.R., Oh, H.: Selective hydrogen isotope separation via breathing transition in MIL-53(Al). J. Am. Chem. Soc. 139, 17743–17746 (2018)CrossRefGoogle Scholar
  8. 8.
    Kim, T.K., Lee, J.H., Moon, D., Moon, H.R.: Luminescent Li-based metal–organic framework tailored for the selective detection of explosive nitroaromatic compounds: direct observation of interaction sites. Inorg. Chem. 52, 589–595 (2013)CrossRefGoogle Scholar
  9. 9.
    Liao, P.-Q., She, J.-Q., Zhang, J.-P.: Metal-organic frameworks for electrocatalysis. Coord. Chem. Rev. 373, 22–48 (2018)CrossRefGoogle Scholar
  10. 10.
    Schneemann, A., Bon, V., Schwedler, I., Senkovska, I., Kaskel, S., Fischer, R.A.: Flexible metal-organic frameworks. Chem. Soc. Rev. 43, 6062–6096 (2014)CrossRefGoogle Scholar
  11. 11.
    Elsaidi, S.K., Mohamed, M.H., Banerjee, D., Thallapally, P.K.: Flexibility in metal-organic frameworks: a fundamental understanding. Coord. Chem. Rev. 358, 125–152 (2018)CrossRefGoogle Scholar
  12. 12.
    Lee, J.H., Kim, T.K., Suh, M.P., Moon, H.R.: Solvent-induced single-crystal to single-crystal transformation of a Zn4O-containing doubly interpenetrated metal-organic framework with a pcu net. CrystEngComm 17, 8807–8811 (2015)CrossRefGoogle Scholar
  13. 13.
    Lee, J.H., Park, S., Jeoung, S., Moon, H.R.: Single-crystal-to-single-crystal transformation of a coordination polymer from 2D to 3D by [2 + 2] photodimerization assisted by a coexisting flexible ligand. CrystEngComm 19, 3719–3722 (2017)CrossRefGoogle Scholar
  14. 14.
    Pedersen, C.J.: Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 89, 7017–7036 (1967)CrossRefGoogle Scholar
  15. 15.
    Liu, Z., Nalluri, S.K.M., Stoddart, J.F.: Surveying macrocyclic chemistry: from flexible crown ethers to rigid cyclophanes. Chem. Soc. Rev. 46, 2459–2478 (2017)CrossRefGoogle Scholar
  16. 16.
    Zhang, H., Zou, R., Zhao, Y.: Macrocycle-based metal-organic frameworks. Coord. Chem. Rev. 292, 74–90 (2015)CrossRefGoogle Scholar
  17. 17.
    Emerson, A.J., Chahine, A., Batten, S.R., Turner, D.R.: Synthetic approaches for the incorporation of free amine functionalities in porous coordination polymers for enhanced CO2 sorption. Coord. Chem. Rev. 365, 1–22 (2018)CrossRefGoogle Scholar
  18. 18.
    Stackhouse, C.A., Ma, S.: Azamacrocycle-based metal organic frameworks: design strategies and applications. Polyhedron 145, 154–165 (2018)CrossRefGoogle Scholar
  19. 19.
    Suh, M.P., Moon, H.R.: Coordination polymer open frameworks constructed of macrocyclic complexes. Adv. Inorg. Chem. 59, 39–79 (2007)CrossRefGoogle Scholar
  20. 20.
    Barefield, E.K.: Coordination chemistry of N-tetraalkylated cyclam ligands-A status report. Coord. Chem. Rev. 254, 1607–1627 (2010)CrossRefGoogle Scholar
  21. 21.
    Corriu, R.J.P., Embert, F., Guari, Y., Reyé, C., Guilard, R.: Coordination chemistry in the solid: evidence for coordination modes within hybrid materials different from those in solution. Chem. Eur. J. 8, 5732–5741 (2002)CrossRefGoogle Scholar
  22. 22.
    Rodríguez-Rodríguez, A., Esteban-Gómez, D., Tripier, R., Tircsó, G., Garda, Z., Tóth, I., de Blas, A., Rodríguez-Blas, T., Platas-Iglesias, C.: Lanthanide(III) complexes with a reinforced cyclam ligand show unprecedented kinetic inertness. J. Am. Chem. Soc. 136, 17954–17957 (2014)CrossRefGoogle Scholar
  23. 23.
    Zhu, X., Lü, J., Li, X., Gao, S., Li, G., Xiao, F., Cao, R.: Syntheses, structures, near-Infrared, and visible luminescence of lanthanide-organic frameworks with flexible macrocyclic polyamine ligands. Cryst. Growth Des. 8, 1897–1901 (2008)CrossRefGoogle Scholar
  24. 24.
    Zhu, X.-D., Tao, T.-X., Zhou, W.-X., Wang, F.-H., Liu, R.-M., Liu, L., Fu, Y.-Q.: A novel lead(II) porous metal–organic framework constructed from a flexible bifunctional macrocyclic polyamine ligand. Inorg. Chem. Commun. 40, 116–119 (2014)CrossRefGoogle Scholar
  25. 25.
    Gao, W.-Y., Niu, Y., Chen, Y., Wojtas, L., Cai, J., Chen, Y.-S., Ma, S.: Porous metal–organic framework based on a macrocyclic tetracarboxylate ligand exhibiting selective CO2 uptake. CrystEngComm 14, 6115–6117 (2012)CrossRefGoogle Scholar
  26. 26.
    Spek, A.L.: PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallogr., Sect. C: Struct. Chem. 71, 9–18 (2015)CrossRefGoogle Scholar
  27. 27.
    Gao, W.-Y., Chen, Y., Niu, Y., Williams, K., Cash, L., Perez, P.J., Wojtas, L., Cai, J., Chen, Y.-S., Ma, S.: Crystal engineering of an nbo topology metal–organic framework for chemical fixation of CO2 under ambient conditions. Angew. Chem. Int. Ed. 53, 2615–2619 (2014)CrossRefGoogle Scholar
  28. 28.
    Zhu, X.-D., Lin, Z.-J., Liu, T.-F., Xu, B., Cao, R.: Two novel 3d-4f heterometallic frameworks assembled from a flexible bifunctional macrocyclic ligand. Cryst. Growth Des. 12, 4708–4711 (2012)CrossRefGoogle Scholar
  29. 29.
    Carné-Sánchez, A., Bonnet, C.S., Imaz, I., Lorenzo, J., Tóth, É, Maspoch, D.: Relaxometry studies of a highly stable nanoscale metal–organic framework made of Cu(II), Gd(III), and the macrocyclic DOTP. J. Am. Chem. Soc. 135, 17711–17714 (2013)CrossRefGoogle Scholar
  30. 30.
    Ariñez-Soriano, J., Albalad, J., Pérez-Carvajal, J., Imaz, I., Busqué, F., Juanhiux, J., Maspoch, D.: Two-step synthesis of heterometallic coordination polymers using a polyazamacrocyclic linker. CrystEngComm 18, 4196–4204 (2016)CrossRefGoogle Scholar
  31. 31.
    Zhu, J., Usov, P.M., Xu, W., Celis-Salazar, P.J., Lin, S., Kessinger, M.C., Landaverde-Alvarado, C., Cai, M., May, A.M., Slebodnick, C., Zhu, D., Senanayake, S.D., Morris, A.J.: A new class of metal-cyclam-based zirconium metal–organic frameworks for CO2 adsorption and chemical fixation. J. Am. Chem. Soc. 140, 993–1003 (2018)CrossRefGoogle Scholar
  32. 32.
    Choi, H.J., Suh, M.P.: Synthesis, crystal structure, and properties of a 3-D network assembled by nickel(II) macrocyclic complex and terephthalato bridge. Inorg. Chem. 38, 6309–6312 (1999)CrossRefGoogle Scholar
  33. 33.
    Moon, H.R., Kim, J.H., Suh, M.P.: Redox-active porous metal–organic framework producing silver nanoparticles from AgI ions at room temperature. Angew. Chem. Int. Ed. 44, 1261–1265 (2005)CrossRefGoogle Scholar
  34. 34.
    Choi, H.J., Suh, M.P.: Self-assembly of molecular brick wall and molecular honeycomb from nickel(II) macrocycle and 1,3,5-benzenetricarboxylate: guest-dependent host structures. J. Am. Chem. Soc. 120, 10622–10628 (1998)CrossRefGoogle Scholar
  35. 35.
    Choi, H.J., Lee, T.S., Suh, M.P.: Self-assembly of a molecular floral lace with one-dimensional channels and inclusion of glucose. Angew. Chem. Int. Ed. 38, 1405–1408 (1999)CrossRefGoogle Scholar
  36. 36.
    Suh, M.P., Choi, H.J., So, S.M., Kim, B.M.: A new metal-organic open framework consisting of threefold parallel interwoven (6,3) nets. Inorg. Chem. 42, 676–678 (2003)CrossRefGoogle Scholar
  37. 37.
    Hyun, S., Kim, T.K., Kim, Y.K., Moon, D., Moon, H.R.: Guest-driven structural flexibility of 2D coordination polymers: synthesis, structural characterizations, and gas sorption properties. Inorg. Chem. Commun. 33, 52–56 (2013)CrossRefGoogle Scholar
  38. 38.
    Kim, H., Suh, M.P.: Flexible eightfold interpenetrating diamondoid network generating 1D channels: selective binding with organic guests. Inorg. Chem. 44, 810–812 (2005)CrossRefGoogle Scholar
  39. 39.
    Almáši, M., Zeleňák, V., Zukai, A., Kuchár, J., Čejka, J.: A novel zinc(II) metal–organic framework with a diamond-like structure: synthesis, study of thermal robustness and gas adsorption properties. Dalton Trans. 45, 1233–1242 (2016)CrossRefGoogle Scholar
  40. 40.
    Moon, H.R., Suh, M.P.: Flexible and redox-active coordination polymer: control of the network structure by pendant arms of a macrocyclic complex. Eur. J. Inorg. Chem. 2010, 3795–3803 (2010)CrossRefGoogle Scholar
  41. 41.
    Kim, Y.K., Hyun, S., Lee, J.H., Kim, T.K., Moon, D., Moon, H.R.: Crystal-size effects on carbon dioxide capture of a covalently alkylamine-tethered metal-organic framework constructed by a one-step self-assembly. Sci. Rep. 6, 19337 (2016)CrossRefGoogle Scholar
  42. 42.
    Choi, H.J., Suh, M.P.: Highly selective CO2 capture in flexible 3D coordination polymer networks. Angew. Chem. Int. Ed. 48, 6865–6869 (2009)CrossRefGoogle Scholar
  43. 43.
    Hyun, S., Lee, J.H., Jung, G.Y., Kim, Y.K., Kim, T.K., Jeoung, S., Kwak, S.K., Moon, D., Moon, H.R.: Exploration of gate-opening and breathing phenomena in a tailored flexible metal–organic framework. Inorg. Chem. 55, 1920–1925 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of ChemistryUlsan National Institute of Science and Technology (UNIST)UlsanRepublic of Korea

Personalised recommendations