Synthesis, characterization and biological analysis of transition metal complexes with macro cyclic ligands derived from adipic acid, ethylenediamine with diethyloxalate and diethylmalonate

  • Nahid NishatEmail author
  • Shahnawaz Ahmad Bhat
  • Abdul Kareem
  • Swati Dhyani
  • Abdulrahman Mohammad
  • Azar Ullah Mirza
Original Article


Macro-cyclic ligands from adipic acid, ethylenediamine with diethyloxalate and diethylmalonate and their respective metal complexes of Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) with macro cyclic ligands (LO) and (LM) L [N,N′-bis(2-aminoethyl)hexanediamide] were synthesized successfully. These metal complexes were characterized by Fourier transform infrared, ultraviolet visible spectrometry, proton nuclear magnetic resonance spectroscopy, and mass Spectrometry, CHNS and thermogravimetric analysis. The elemental analysis confirms the structures for Mn(II), Co(II) and Ni(II) complexes similar to octahedral geometry, Cu(II) complexes as a square planar geometry and Zn(II) complexes in the tetrahedral geometry. The molar conductivities of all the metal complexes were taken in 10−3 M DMSO, and values of all the metal complexes showed their electrolytic nature which indicates the presence of chloride ions. Thermal analysis supports as the metal complexes are thermally stable. The result of antimicrobial activity against various microorganisms confirms that the metal complexes are potent bactericides and fungicides than the ligand. Metal complexes of LO with Cu(II) and Zn(II) were found to be highly active against S. typhimurium than the complexes of LM.

Graphical abstract


Macro-cyclic Ethylenediamine Diethyloxalate Ligand Metal complexes 



The authors Shahnawaz Ahmad Bhat, Abdul kareem and Azar Ullah Mirza thanks University Grants Commission (Grant No. 2015), New Delhi, for the financial support, and thankful to Department of Chemistry, Jamia Millia Islamia, New Delhi and Central Instrumentation facility, Jamia Millia Islamia, New Delhi for providing necessary facilities.


  1. 1.
    Tang, J.K., Li, Y.Z., Wang, Q.L., Gao, E.Q., Liao, D.Z., Jiang, Z.H., Yan, S.P., Cheng, P., Wang, L.F., Wang, G.L., Synthesis: crystal structure, and magnetic properties of the first nonanuclear lanthanide (III)–copper (II) complexes of macrocyclic oxamide [NaLn2Cu6](macrocyclic oxamide = 1, 4, 8, 11-tetraazacyclotradecanne-2, 3-dione, Ln = Pr, Nd). Inorg. Chem. 41, 2188–2192 (2002)CrossRefGoogle Scholar
  2. 2.
    Tang, J.K., Wang, L.Y., Zhang, L., Gao, E.Q., Liao, D.Z., Jiang, Z.H., Yan, S.P., Cheng, P.: Heterobinuclear copper (II)–manganese (II) complexes behaving as three-dimensional supramolecular networks via both macrocyclic oxamido-bridges and hydrogen bonds. J. Chem. Soc. Dalton Trans. 8, 1607–1612 (2002)CrossRefGoogle Scholar
  3. 3.
    Sun, Y.Q., Liang, M., Dong, W., Yang, G.M., Liao, D.Z., Jiang, Z.H., Yan, S.P., Cheng, P: Hydrothermal, syntheses, crystal structures, magnetism and fluorescence quenching of oxamidato-bridged pentanuclear CuII4LnIII complexes containing macrocyclic ligands (Ln = Eu, Tb) and the crystal structure of a hexanuclear NiII5SmIII complex. ‎Eur. J. Inorg. Chem. 7, 1514–1521 (2004)CrossRefGoogle Scholar
  4. 4.
    Gao, E.Q., Tang, J.K., Liao, D.Z., Jiang, Z.H., Yan, S.P., Wang, G.L.: A new class of heterobinuclear complexes: crystal structure and magnetism of copper (II)-nickel (II) complexes Incorporating two different macrocyclic ligands. Helv. Chim. Acta 84, 908–917 (2001)CrossRefGoogle Scholar
  5. 5.
    Tang, J.K., Wang, Q.L., Gao, E.Q., Chen, J.T., Liao, D.Z., Jiang, Z.H., Cheng, P.: First crystal structure of a (µ-oxamidato) tricopper (II) metal (II)-type tetranuclear complex: synthesis, crystal structure, and magnetism of a copper (II) manganese (II) complex ([CuII3MnII (µ-L) 3](N3) 2⋅ EtOH) incorporating a macrocyclic oxamide ligand L (macrocyclic oxamide = 1, 4, 8, 11-tetraazacyclotetradecane-2, 3-dione). Helv. Chim. Acta 85, 175–182 (2002)CrossRefGoogle Scholar
  6. 6.
    Sibert, J.W., Cory, A.H., Cory, J.G.: Lipophilic derivatives of cyclam as new inhibitors of tumor cell growth. Chem. Commun. (2002). CrossRefGoogle Scholar
  7. 7.
    De Leon-Rodriguez, L.M., Ortiz, A., Weiner, L.A., Zhang, S., Kovacs, Z., Kodadek, T., Sherry, A.D.: Magnetic resonance imaging detects a specific peptide-protein binding event. J. Am. Chem. Soc. 124, 3514–3515 (2002)CrossRefGoogle Scholar
  8. 8.
    Caravan, P., Ellison, J.J., McMurry, T.J., Lauffer, R.B.: Gadolinium (III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem. Rev. 99, 2293–2352 (1999)CrossRefGoogle Scholar
  9. 9.
    Beeby, A., Bushby, L.M., Maffeo, D., Williams, J.G.: Intramolecular sensitisation of lanthanide (III) luminescence by acetophenone-containing ligands: the critical effect of para-substituents and solvent. J. Chem Soc. Dalton Trans. (2002). CrossRefGoogle Scholar
  10. 10.
    Burrows, C.J., Muller, J.G.: Oxidative nucleobase modifications leading to strand scission. Chem. Rev. 98, 1109–1152 (1998)CrossRefGoogle Scholar
  11. 11.
    Shih, H.C., Tang, N., Burrows, C.J., Rokita, S.E.: Nickel-based probes of nucleic acid structure bind to guanine N7 but do not perturb a dynamic equilibrium of extra helical guanine residues. J. Am. Chem. Soc. 120, 3284–3288 (1998)CrossRefGoogle Scholar
  12. 12.
    Moghaddas, S., Hendry, P., Geue, R.J., Qin, C., Bygott, A.M., Sargeson, A.M., Dixon, N.E.: Interaction of substituted cobalt (III) cage complexes with DNA. Dalton Trans. (2000). CrossRefGoogle Scholar
  13. 13.
    Robson, D.A., Rees, L.H., Mountford, P., Schroder, M.: An unprecedented coordination mode for hemilabile pendant-arm 1, 4, 7-triazacyclononanes and the synthesis of cationic organoaluminium complexes. Chem. Commun. 1269, 1269–1270 (2000)CrossRefGoogle Scholar
  14. 14.
    Ehrlich, L.A., Skrdla, P.J., Jarrell, W.K., Sibert, J.W., Armstrong, N.R., Saavedra, S.S., Barrett, A.G., Hoffman, B.M.: Preparation of polyetherol-appended sulfur porphyrazines and investigations of peripheral metal ion binding in polar solvents. Inorg. Chem. 39, 3963–3969 (2000)CrossRefGoogle Scholar
  15. 15.
    Ho, Y.P., Au-Yeung, S.C., To, K.K.: Platinum-based anticancer agents: innovative design strategies and biological perspectives. Med. Res. Rev. 23, 633–655 (2003)CrossRefGoogle Scholar
  16. 16.
    Bhandari, A., Li, B., Gallop, M.A.: Solid-phase synthesis of pyrrolo [3, 4-b] pyridines and related pyridine-fused heterocycles. Synthesis 11, 1951–1960 (1999)CrossRefGoogle Scholar
  17. 17.
    Grosche, P., Höltzel, A., Walk, T.B., Trautwein, A.W., Jung, G.: Pyrazole, pyridine and pyridone synthesis on solid support. Synthesis 11, 1961–1970 (1999)CrossRefGoogle Scholar
  18. 18.
    Gordeev, M.F., Patel, D.V., Wu, J., Gordon, E.M.: Approaches to combinatorial synthesis of heterocycles: solid phase synthesis of pyridines and pyrido [2, 3-d] pyrimidines. Tetrahedron Lett. 37, 4643–4646 (1996)CrossRefGoogle Scholar
  19. 19.
    Bencini, A., Benelli, C., Fabretti, A.C., Franchini, G., Gatteschi, D.: Magnetic properties and crystal structure of a linear-chain copper (II) compound with bridging acetate and oxamidate ligands. Inorg. Chem. 25, 1063–1066(1986)CrossRefGoogle Scholar
  20. 20.
    Comba, P., Luther, S.M., Maas, O., Pritzkow, H., Vielfort, A.: Template synthesis of a tetraazamacrocyclic ligand with two pendant pyridinyl groups: properties of the isomers of the metal-free ligand and of their first-row transition metal compounds. Inorg. Chem. 40, 2335–2345 (2001)CrossRefGoogle Scholar
  21. 21.
    Singh, D.P., Malik, V., Kumar, R., Singh, J.: Synthesis, spectroscopic, and antibacterial activity of tetraazamacrocyclic complexes of trivalent chromium, manganese, and iron. J. Enzym. Inhib. Med. Chem. 24, 1201–1206 (2009)CrossRefGoogle Scholar
  22. 22.
    Herrera, A.M., Kalayda, G.V., Disch, J.S., Wikstrom, J.P., Korendovych, I.V., Staples, R.J., Campana, C.F., Nazarenko, A.Y., Haas, T.E., Rybak-Akimova, E.V.: Reactions at the azomethine C = N bonds in the nickel (II) and copper (II) complexes of pyridine-containing Schiff-base macrocyclic ligands. Dalton Trans. (2003). CrossRefGoogle Scholar
  23. 23.
    Zhang, Z., Nair, S.A., McMurry, T.J.: Gadolinium meets medicinal chemistry: MRI contrast agent development. Curr. Med. Chem. 12, 751–778 (2005)CrossRefGoogle Scholar
  24. 24.
    Gulerman, N.N., Rollas, S., Erdeniz, H., Kiraz, M.: Anti-bacterial, anti-fungal and anti-mycobacterial activities of some substituted thiosemicarbazides and 2, 5-disubstituted-1, 3, 4-thiadiazoles. J. Pharm. Sci. 26, 1–5 (2001)Google Scholar
  25. 25.
    Salavati-Niasari, M., Najafian, H.: One-pot template synthesis and properties of Ni (II) complexes of 16-membered hexaaza macrocycles. Polyhedron 22, 2633–2638 (2003)CrossRefGoogle Scholar
  26. 26.
    Negwer, M.: Organic-Chemical Drugs and their Synonyms, 8th edn., p. 4254. Wiley, Berlin (2001)Google Scholar
  27. 27.
    Narasimhan, B., Belsare, D., Pharande, D., Mourya, V., Dhake, A.: Esters, amides and substituted derivatives of cinnamic acid: synthesis, antimicrobial activity and QSAR investigations. Eur. J. Med. Chem. 39, 827 (2004)CrossRefGoogle Scholar
  28. 28.
    Milne, G.W.A.: CRC Hand Book of Pesticides. CRC Press, Boca Raton (1995). ISBN 0849324475Google Scholar
  29. 29.
    Jhaumeer-Laulloo, S., Bhowon, M.G., Hosany, A., Synthesis, catalytic and antibacterial activity of ruthenium complexes of 2, 2′-dithiobis [N-(2-hydroxy-naphth-3-yl) benzamides. J. Ind. Chem. 81, 547–551 (2004)Google Scholar
  30. 30.
    Chandra, S.: Spectroscopic, redox and biological activities of transition metal complexes with ons donor macrocyclic ligand derived from semicarbazide and thiodiglycolic acid. Spectrochim. Acta A 60, 2153–2162 (2004)CrossRefGoogle Scholar
  31. 31.
    Shakir, M., Varkey, S.P.: A new synthetic route for the preparation of a new series of 14-22-membered tetraoxomacrocyclic tetraamines and their transition metal complexes. Polyhedron 14, 1117–1127 (1995)CrossRefGoogle Scholar
  32. 32.
    Mishra, A., Kaushik, N.K., Verma, A.K., Gupta, R.: Synthesis, characterization and antibacterial activity of cobalt (III) complexes with pyridine–amide ligands. Eur. J. Med. Chem. 43, 2189–2196 (2008)CrossRefGoogle Scholar
  33. 33.
    Avaji, P.G., Patil, S.A., Badami, P.S.: Synthesis, spectral, thermal, solid-state DC electrical conductivity and biological studies of Co (II) complexes with Schiff bases derived from 3-substituted-4-amino-5-hydrazino-1, 2, 4-triazole and substituted salicylaldehydes. Trans. Met. Chem. 33, 275–283 (2008)CrossRefGoogle Scholar
  34. 34.
    Cronin, L., McGregor, P.A., Parsons, S., Teat, S., Gould, R.O., White, V.A., Long, N.J., Robertson, N.: Synthesis, structure, and complexation of a large 28-mer macro cycle containing two binding sites for either anions or metal ions. Inorg. Chem. 43, 8023–8029 (2004)CrossRefGoogle Scholar
  35. 35.
    Chandra, S., Gupta, L.K., Agrawal, S.: Synthesis spectroscopic and biological approach in the characterization of novel [N 4] macrocyclic ligand and its transition metal complexes. Met. Chem. 32, 558–563 (2007)CrossRefGoogle Scholar
  36. 36.
    Kareem, A., Khan, M.S., Nami, S.A., Bhat, S.A., Mirza, A.U., Nishat, N.: Curcumin derived Schiff base ligand and their transition metal complexes: synthesis, spectral characterization, catalytic potential and biological activity. ‎J. Mol. Struct. 1167, 261–273 (2018)CrossRefGoogle Scholar
  37. 37.
    Sharma, K.K., Singh, R., Fahmi, N., Singh, R.V.: Synthesis, coordination behavior, and investigations of pharmacological effects of some transition metal complexes with ionized Schiff bases. J. Coord. Chem. 63, 3071–3082 (2010)CrossRefGoogle Scholar
  38. 38.
    Jain, D., Sarkar, A., Chandra, S., Chandra, R.: Synthesis of complexes of some transition metals with nitrogen donor macrocyclic ligands. Synth. React. Inorg. Met.-Org. Chem. 33, 1911–1926 (2003)CrossRefGoogle Scholar
  39. 39.
    Prokhorov, A., Bernard, H., Bris, N.L., Marquet, N., Handel, H.: Synthesis of a new ditopic ligand possessing linear and cyclic tetraaza subunits. Synth. Commun. 38, 1589–1600 (2008)CrossRefGoogle Scholar
  40. 40.
    Chandra, S., Gupta, L.K.: Spectroscopic, cyclic voltammetric and biological studies of transition metal complexes with mixed nitrogen-sulphur (NS) donor macrocyclic ligand derived from thiosemicarbazide. Spectrochim. Acta. A 62, 453–460 (2005)CrossRefGoogle Scholar
  41. 41.
    Agarwal, R.K., Singh, L., Sharma, D.K.: Synthesis, spectral, and biological properties of copper (II) complexes of thiosemicarbazones of Schiff bases derived from 4-aminoantipyrine and aromatic aldehydes. Bioinorg. Chem. Appl. (2006). CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Tanabe, Y., Sugano, S.: On the absorption spectra of complex ions II. J. Phys. Soc. Jpn. 9, 766–779 (1954)CrossRefGoogle Scholar
  43. 43.
    Lever, A.B.P.: Inorganic electronic spectroscopy. Elsevier, Amsterdam (1968)Google Scholar
  44. 44.
    Khan, S.A., Nami, S.A., Bhat, S.A., Kareem, A., Nishat, N.: Design and development of several polymeric metaleorganic frameworks, spectral characterization, and their antimicrobial activity. C R Chim. (2018). CrossRefGoogle Scholar
  45. 45.
    Mirza, A.U., Kareem, A., Nami, S.A., Khan, M.S., Rehman, S., Bhat, S.A., Mohammad, A., Nishat, N.: Biogenic synthesis of iron oxide nanoparticles using Agrewia optiva and Prunus persica phyto species: characterization, antibacterial and antioxidant activity. J. Photochem. Photobiol. B 185, 262–274 (2018)CrossRefGoogle Scholar
  46. 46.
    Khan, S.A., Nami, S.A., Bhat, S.A., Kareem, A., Nishat, N.: Synthesis, characterization and antimicrobial study of polymeric transition metal complexes of Mn (II), Co (II), Ni (II), Cu (II) and Zn (II). Microb. Pathog. 110, 414–425 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Inorganic Material Research Laboratory, Department of ChemistryJamia Millia IslamiaNew DelhiIndia

Personalised recommendations