Advertisement

The synthesis and characterization of [M(salen/salophen/saldeta)] [M=Cr(III), Mn(III) or Fe(III)] capped s-triazine cored tripodal trinuclear Schiff bases complexes

  • Berkman İşçi
  • Şaban UysalEmail author
Original Article
  • 139 Downloads

Abstract

Ligand complexes ([M(salen/salophen)]2O, [M(saldeta)]Cl shortened as LC, M=Cr(III), Mn(III) or Fe(III)), have been synthesized. 2,4,6-tris(4-formylphenoxy)-1,3,5-triazine (3) was synthesized with the reaction of p-hydroxybenzaldehyde (2) and cyanuric chloride (1). 2,4,6-tris(4-(4′-carboxyphenylimino)phenoxy)-1,3,5-triazine (5) was synthesized with the reaction of 2,4,6-tris(4-formylphenoxy)-1,3,5-triazine (3) and 4-aminobenzoic acid (4). 2,4,6-tris(4-(4-carboxyphenylimino)phenoxy)-1,3,5-triazine was treated with SOCl2 in CH3CN, and 2,4,6-tris(4-(4′-chloroformylphenylimino)phenoxy)-1,3,5-triazine (6) was obtained. 2,4,6-tris(4-(4′-chloroformylphenylimino)phenoxy)-1,3,5-triazine was reacted with 4-aminobenzoic acid or 4-hydroxbenzoic acid in CH3CN, and 2,4,6-tris(4-(4′-(4′′-carboxyphenylamido)phenylimino)phenoxy)-1,3,5-triazine (8) and 2,4,6-tris(4-(4′-(4′′-carboxyphenylformato)phenylimino)phenoxy)-1,3,5-triazine (9) were obtained. s-Triazine cored tripodal trinuclear Schiff bases complexes were synthesized with the reaction of 8 and/or 9 and ligand complexes. The complexes have been characterized as low-spin (S = 1/2) distorted octahedral Fe(III)Salen/Salophen, low-spin (S = 1) distorted octahedral Mn(III)Salen/Salophen, high-spin (S = 5/2) distorted octahedral Fe(III)Saldeta, high-spin (S = 2) distorted octahedral Mn(III)Saldeta and (S = 3/2) distorted octahedral Cr(III)Salen/Salophen/Saldeta bridged by COO groups. The structure of all ligand and complexes were identified by using elemental analysis, thermal analyses (TGA-DTG), magnetic susceptibility, ESI-MS, ICP–AES, UV–Vis, 1H-NMR, 13C-NMR and FT-IR spectral data.

Graphical abstract

Keywords

Cyanuric chloride Salen Salophen Saldeta Tripodal trinuclear complexes 

Notes

Acknowledgements

This study was produced from Berkman İşçi’s M. Sc. Thesis. The authors are grateful to Karabuk University Coordinator of Scientific Research Projects (Project No: KBÜBAP-17-YL-035) for financial support in order to carry on this research work.

References

  1. 1.
    Blonty, G.: Recent applications of 2,4,6-trichloro-1,3,5-triazine and its derivatives in organic synthesis. Tetrahedron 62, 41, 9507–9522 (2006)CrossRefGoogle Scholar
  2. 2.
    Koc, Z.E.: Complexes of iron(III) and chromium(III) salen and salophen Schiff bases with bridging 1,3,5-triazine derived multidirectional ligands. J. Heterocycl. Chem. 48, 769 (2011)CrossRefGoogle Scholar
  3. 3.
    Qi, X., Kim, S.K., Han, S.J., Xu, L., Jee, A.Y., Kim, H.N., Lee, C., Kim, Y., Lee, M., Kima, S.J., Yoona, J.: New BODIPY-triazine based tripod fluorescent systems. Tetrahedron Lett. 49, 261–264 (2008)CrossRefGoogle Scholar
  4. 4.
    Qi, X., Kim, S.K., Han, S.J., Xu, L., Jee, A.Y., Kim, H.N., Lee, C.: Study on the BODIPY-triazine-based tripod fluorescent systems: various structures from similar procedure. Supramol. Chem. 21, 455–464 (2009)CrossRefGoogle Scholar
  5. 5.
    Chauhan, S.M.S., Giri, N.G.: Rosette formation by hydrogen bonding of 5,5-dialkylbarbituric acids with 2-amino-4,6-bis[5-(4′-aminophenyl)porphyrinatozinc]-1,3,5-triazines in solution. Supramol. Chem. 20, 743–752 (2008)CrossRefGoogle Scholar
  6. 6.
    Ma, H., Nie, L., Xiong, S.: Recognition of guanine by a designed triazine-based fluorescent probe through intermolecular multiple hydrogen bonding. Supramol. Chem. 16, 311–317 (2004)CrossRefGoogle Scholar
  7. 7.
    Shown, I., Murthy, N.: Synthesis and characterization of linear water-soluble γ-cyclodextrin based polymers as drug carrier systems. Supramol. Chem. 20, 573–578 (2008)CrossRefGoogle Scholar
  8. 8.
    Celikbilek, S., Koc, Z.E.: Investigation of Dipodal oxy-Schiff base and its salen and salophen Fe(III)/Cr(III)/Mn(III) Schiff bases (N2O2) caped complexes and their magnetic and thermal behaviors. J. Mol. Struct. 1065–1066, 205–209 (2014)CrossRefGoogle Scholar
  9. 9.
    Demirci, S., Dogan, A., Turkmen, N.B., Telci, D., Rizvanov, A.A., Sahin, F.: Schiff base-Poloxamer P85 combination demonstrates chemotherapeutic effect on prostate cancer cells in vitro. Biomed. Pharmacother. 86, 492–501 (2017)CrossRefGoogle Scholar
  10. 10.
    Naz, A., Arun, S., Narvi, S.S., Alam, M.S., Singh, A., Bhartiya, P., Dutta, P.K.: Cu(II)-carboxymethyl chitosan-silane schiff base complex grafted onnano silica: structural evolution, antibacterial performance and dyedegradation ability. Int. J. Biol. Macromol. 110, 215–226 (2018)CrossRefGoogle Scholar
  11. 11.
    Al-Hamdani, A.A.S., Balkhi, A.M., Falah, A., Shaker, S.A.: Synthesis and investigation of thermal properties of vanadyl complexes with azo-containing Schiff-base dyes. J. Saudi Chem. Soc. 20, 487–501 (2016)CrossRefGoogle Scholar
  12. 12.
    Wu, J., Chen, L., Fu, T., Zhao, H., Guo, D., Wang, X., Wang, Y.: New application for aromatic Schiff base: high efficient flame-retardant and anti-dripping action for polyesters. Chem. Eng. J. 336, 622–632 (2018)CrossRefGoogle Scholar
  13. 13.
    Agathian, K., Kannammal, L., Meenarathi, B., Kailash, S., Anbarasan, R.: Synthesis, characterization and adsorption behavior of cotton fiberbased Schiff base. Int. J. Biol. Macromol. 107, 1102–1112 (2018)CrossRefGoogle Scholar
  14. 14.
    Lu, F., Astruc, D.: Nanomaterials for removal of toxic elements from water. Coord. Chem. Rev. 356, 147–164 (2018)CrossRefGoogle Scholar
  15. 15.
    Gonul, I., Ay, B., Karaca, S., Sahin, O., Serin, S.: Novel copper(II) complexes of two tridentate ONN type ligands: Synthesis, characterization, electrical conductivity and luminescence properties. Inorg. Chim. Acta 477, 75–83 (2018)CrossRefGoogle Scholar
  16. 16.
    Roy, S., Mondal, T.K., Layek, A., Saha, R., Sinha, C.: Structure, spectra and electrical conductivity of copper(I) and silver(I) phosphino bridging mixed ligand complexes with coumarinyl Schiff base. Inorg. Chim. Acta 469, 523–535 (2018)CrossRefGoogle Scholar
  17. 17.
    Dolatyari, L., Yaftian, M.R., Rostamnia, S.: Removal of uranium(VI) ions from aqueous solutions using Schiff base functionalized SBA-15 mesoporous silica materials. J. Environ. Manage. 169, 8–17 (2016)CrossRefGoogle Scholar
  18. 18.
    Alizadeh, K., Nemati, H., Zohrevand, S., Hashemi, P., Kakanejadifard, A., Shamsipur, M., Ganjali, M.R., Faridbod, F.: Selective dispersive liquid–liquid microextraction and preconcentration of Ni(II) into a micro droplet followed by ETAAS determination using a yellow Schiff’s base bisazanyl derivative. Mater. Sci. Eng. C 33, 916–922 (2013)CrossRefGoogle Scholar
  19. 19.
    Egekenze, R., Gultneh, Y., Butcher, R.: Catalysis of alkene epoxidation by manganese(II) and (III) complexes of both Schiff base and reduced Schiff base ligands utilizing environmentally benign H2O2. Polyhedron 144, 198–209 (2018)CrossRefGoogle Scholar
  20. 20.
    Baran, T., Baran, N.Y., Mentes, A.: Preparation, structural characterization, and catalytic performance of Pd(II) and Pt(II) complexes derived from cellulose Schiff base. J. Mol. Struct. 1160, 154–160 (2018)CrossRefGoogle Scholar
  21. 21.
    Kılınc, D., Sahin, O.: Synthesis of polymer supported Ni (II)-Schiff Base complex and its usage as a catalyst in sodium borohydride hydrolysis. Int. J. Hydrog. Energy, (2018)  https://doi.org/10.1016/j.ijhydene.2018.02.023 CrossRefGoogle Scholar
  22. 22.
    Sedighipoor, M., Kianfar, A.H., Mohammadnezhad, G., Gorls, H., Plass, W.: Unsymmetrical palladium(II) N,N,O,O-Schiff base complexes: efficient catalysts for Suzuki coupling reactions. Inorg. Chim. Acta 476, 20–26 (2018)CrossRefGoogle Scholar
  23. 23.
    Li, Z., Gao, F., Xiao, Z., Wub, X., Zuo, J., Song, Y.: Nonlinear optical properties and excited state dynamics of sandwich-type mixed (phthalocyaninato)(Schiff-base) triple-decker complexes: effect of rare earth atom. Opt. Laser Technol. 103, 42–47 (2018)CrossRefGoogle Scholar
  24. 24.
    Jia, J., Tao, X., Li, Y., Sheng, W., Han, L., Gao, J., Zheng, Y.: Synthesis and third-order optical nonlinearities of ferrocenyl Schiff base. Chem. Phys. Lett. 514, 114–118 (2011)CrossRefGoogle Scholar
  25. 25.
    Cisterna, J., Dorcet, V., Manzur, C., Ledoux-Rak, I., Hamon, J., Carrillo, D.: Synthesis, spectral, electrochemical, crystal structures and nonlinear optical properties of unsymmetrical Ni(II) and Cu(II) Schiff base complexes. Inorg. Chim. Acta 430, 82–90 (2015)CrossRefGoogle Scholar
  26. 26.
    Shahid, M., Salim, M., Khalid, M., Tahir, M.N., Khan, M.U., Braga, A.A.C.: Synthetic, XRD, non-covalent interactions and solvent dependent nonlinear optical studies of Sulfadiazine-Ortho-Vanillin Schiff base: (E)-4-((2-hydroxy-3-methoxy-benzylidene)amino)-N-(pyrimidin-2-yl)benzene-sulfonamide. J. Mol. Struct. 1161, 66–75 (2018).CrossRefGoogle Scholar
  27. 27.
    Yu, W., Jia, J., Gao, J., Han, L., Li, Y.: The preparation of a new type of ferrocene-based compounds with large conjugated system containing symmetrical aromatic vinyl with Schiff base moieties and the study of their third-order nonlinear optical properties. Chem. Phys. Lett. 661, 251–256 (2016)CrossRefGoogle Scholar
  28. 28.
    Thirunavukkarasu, T., Sparkes, H.A., Natarajan, K., Gnanasoundari, V.G.: Synthesis, characterization and biological studies of a novel Cu(II) Schiff base complex. Inorg. Chim. Acta 473, 255–262 (2018)CrossRefGoogle Scholar
  29. 29.
    Shiju, C., Arish, D., Bhuvanesh, N., Kumaresan, S.: Synthesis, characterization, and biological evaluation of Schiff base-platinum(II) complexes. Spectrochim. Acta A 145, 213–222 (2015)CrossRefGoogle Scholar
  30. 30.
    Uysal, S., Ucan, H.I.: The synthesis and characterization of melamine based Schiff bases and its trinuclear [salen/salophenFe(III)] and [salen/salophen-Cr(III)] capped complexes. J. Inc. Phenom. Macrocycl. Chem. 65(3), 299–304 (2009)CrossRefGoogle Scholar
  31. 31.
    Koc, Z.E., Uysal, S.: Synthesis and characterization of tripodal oxy-schiff base (2,4,6-tris(4-carboxymethylenephenylimino-40-formylphenoxy)-1,3,5-triazine) and the thermal and magnetic properties of its Fe(III)/Cr(III) complexes. J. Inorg. Organomet. Polym. 21, 400–406 (2011)CrossRefGoogle Scholar
  32. 32.
    Koc, Z.E., Ucan, H.I.: Complexes of iron(III) salen and saloph Schiff bases with bridging 2,4,6-tris(2,5-dicarboxyphenylimino-4-formylphenoxy)-1,3,5-triazine and 2,4,6-tris(4-carboxyphenyl-imino-4-formylphenoxy)-1,3,5-triazine. Transit. Metal Chem. 32, 597–602 (2007)CrossRefGoogle Scholar
  33. 33.
    Koc, Z.E., Ucan, H.I.: Complexes of iron(III) and chrom(III) salen and saloph Schiff bases with bridging 2,4,6-tris(4-nitrophenylimino-4-formylphenoxy)-1,3,5-triazine. J. Macromol. Sci. 45(12), 1072–1077 (2008)CrossRefGoogle Scholar
  34. 34.
    Uysal, S., Er, M., Tahtaci, H.: Synthesis and characterization of tetra-armedthiosemicarbazone and its salen/salophen capped transition metal complexes: investigation of their thermal and magnetic properties”. Synth. Commun. 46, 22, 1820–1832 (2016)CrossRefGoogle Scholar
  35. 35.
    Uysal, S., Koc, Z.E.: Synthesis and characterization of dendrimeric melamine cored [salen/salophFe(III)] and [salen/salophCr(III)] capped complexes and their magnetic behaviors. J. Hazard. Mater. 175(1–3), 532–539 (2010)CrossRefGoogle Scholar
  36. 36.
    Koc, Z.E., Uysal, S.: Synthesis and characterization of dendrimeric salen/saloph bridging complexes and investigation of their magnetic and thermal behaviours. Helv. Chim. Acta 93(5), 910–919 (2010)CrossRefGoogle Scholar
  37. 37.
    Kopel, P., Sindelar, Z., Klicka, R.: Complexes of iron(III) salen and saloph Schiff bases with bridging dicarboxylic and tricarboxylic acids. Transit. Metal Chem. 23(2), 139–142 (1998)CrossRefGoogle Scholar
  38. 38.
    Gembicky, M., Boca, R., Renz, F.: A heptanuclear Fe(II)-Fe(III)6 system with twelve unpaired electrons. Inorg. Chem. Commun. 3(11), 662–665 (2000)CrossRefGoogle Scholar
  39. 39.
    Tahmassebi, D.C., Sasaki, T.: Synthesis of a New Trialdehyde Template for Molecular Imprinting. J. Org. Chem. 59, 679–681 (1994)CrossRefGoogle Scholar
  40. 40.
    Uysal, S., Koc, Z.E.: Synthesis and characterization of dopamine substitue tripodal trinuclear [(salen/salophen/salpropen)M] (M=Cr(III), Mn(III), Fe(III) ions) capped s-triazine complexes: Investigation of their thermal and magnetic properties. J. Mol. Struct. 1109, 119–126 (2016)CrossRefGoogle Scholar
  41. 41.
    Uysal, S., Koc, Z.E.: The synthesis and characterization of (MSalen/salophen/saldeta/salpy) [M=Fe(III) or Cr(III)] capped heteromultinuclear schiff bases-dioxime Ni(II) complexes: their thermal and magnetic behaviours. J. Mol. Struct. 1165, 14–22 (2018)CrossRefGoogle Scholar
  42. 42.
    Uysal, S., Koc, Z.E., Celikbilek, S., Ucan, H.I.: Synthesis of star-shaped macromolecular schiff base complexes having melamine cores and their magnetic and thermal behaviors. Synth. Commun. 42(7), 1033–1104 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of SciencesKarabuk UniversityCampus of Demir-CelikTurkey

Personalised recommendations