Skip to main content

Advertisement

Log in

Biomimetic approach towards the preparation of hydroxyapatite and hydroxyapatite/chitosan/β-cyclodextrin nanoparticles: application to controlled drug release

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Hydroxyapatite (HAp) and hydroxyapatite/chitosan/β-cyclodextrin (HAp/CS/β-CD) nanoparticles were successfully prepared in the modified simulated body fluid (SBF) solution at the physiological conditions (pH 7.4, temperature = 37 °C). CS/β-CD nanoparticles acted as templates for the synthesis of HAp/CS/β-CD nanoparticles to improve the nanoarchitecture of HAp and its crystallinity.The nanoparticles were characterized by FT-IR spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Kneading and coprecipitation methods were applied to prepare the inclusion complex involving β-CD and p-THPP (5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrin), a photosensitizer for anti-cancer drugs. The 1:1 stoichiometric ratio of the formed inclusion complex was characterized by a formation constant of 7.216 × 102 mol−1 dm3 and analyzed by 1H NMR, FTIR, and UV–Vis. The p-THPP delivery release in vitro was in this order: HAp/CS/β-CD < CS/β-CD < < HAp/β-CD < β-CD, hinting at a better controlled release by HAp/CS/β-CD nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Yuan, Z., Ye, Y., Gao, F., Yuan, H., Lan, M., Lou, K., Wang, W.: Chitosan-graft-β-cyclodextrin nanoparticles as a carrier for controlled drug release. Int. J. Pharm. 446, 191–198 (2013)

    Article  CAS  Google Scholar 

  2. Yih, T.C., Al-Fandi, M.: Engineered nanoparticles as precise drug delivery systems. J. Cell. Biochem. 97, 1184–1190 (2006)

    Article  CAS  Google Scholar 

  3. Moore, T.L., Schreurs, A.S., Morrison, R.A., Jelen, E.K., Loo, J., Globus, R.K., Alexis, F.: Polymer-coated hydroxyapatite nanoparticles for the delivery of statins. J. Nanomed. Nanotechnol. 5, 237 (2014). https://doi.org/10.4172/2157-7439.1000237

    Article  CAS  Google Scholar 

  4. Huang, W., Zhang, J., Dorn, H.C., Zhang, C.: Assembly of bio-nanoparticles for double controlled drug release. PLoS ONE (2013). https://doi.org/10.1371/journal.pone.0074679

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jafari, S., Adibkia, K.: Application of hydroxyapatite nanoparticle in the drug delivery systems. J. Mol. Pharm. Org. Process Res. 3(1), e118 (2015). https://doi.org/10.4172/2329-9053.1000e118

    Article  CAS  Google Scholar 

  6. Kaur, S., Bala, N., Khosla, C.: Preparation and deposition of hydroxyapatite on biomaterials by sol-gel technique—a review. Chitkara Chem. Rev. 1, 59–69 (2013)

    Article  Google Scholar 

  7. Salata, O.V.: Applications of nanoparticles in biology and medicine. J. Nanobiotechnol. (2004). https://doi.org/10.1186/1477-3155-2-3

    Article  Google Scholar 

  8. Nayak, A.K.: Hydroxyapatite synthesis methodologies: an overview. Int. J. ChemTech. Res. 2, 903–907 (2011)

    Google Scholar 

  9. Dorozhkin, S.V.: Biocomposites and hybrid biomaterials based on calcium orthophosphates. Biomatter 1, 3–56 (2011). https://doi.org/10.4161/biom.1.1.16782

    Article  PubMed  PubMed Central  Google Scholar 

  10. Brundavanam, S., Eddy, G., Poinern, J., Fawcett, D.: Synthesis of a hydroxyapatite nanopowder via ultrasound irradiation from calcium hydroxide powders for potential biomedical applications. Nanosci. Nanoeng. 3, 1–7 (2015). https://doi.org/10.13189/nn.2015.030101

    Article  CAS  Google Scholar 

  11. Manoj, M., Subbiah, R., Mangalaraj, D., Ponpandian, N., Viswanathan, C., Park, K.: Influence of growth parameters on the formation of hydroxyapatite (HAp) nanostructures and their cell viability studies. Nanobiomedicine (2015). https://doi.org/10.5772/60116

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ferraz, M.P., Monteiro, F.J., Manuel, C.M.: Hydroxyapatite nanoparticles: a review of preparation methodologies. J. Appl. Biomater. Biomech. 2, 74–80 (2004)

    CAS  PubMed  Google Scholar 

  13. Foroughi, F., Hassanzadeh-Tabrizi, S.A., Bighamb, A.: In situ microemulsion synthesis of hydroxyapatite-MgFe2O4 nanocomposite as a magnetic drug delivery system. Mater. Sci. Eng. C Mater. Biol. Appl. 68, 774–779 (2016)

    Article  CAS  Google Scholar 

  14. Xu, Q., Czernuszka, J.T.: Controlled release of amoxicillin from hydroxyapatite-coated poly(lactic-co-glycolic acid) microspheres. J. Control. Release 127, 146–153 (2008)

    Article  CAS  Google Scholar 

  15. Venkatesan, J., Vinodhini, P.A., Sudha, P.N., Kim, S.K.: Chitin and chitosan composites for bone tissue regeneration. Adv. Food Nutr. Res. 73, 59–81 (2014)

    Article  CAS  Google Scholar 

  16. Kim, J.-H., Kim, Y.-S., Park, K., Lee, S., Nam, H.-Y., Min, K.-H., Jo, H.-G., Park, J.-H., Choi, K., Jeong, S.-Y., Park, R.-W., Kim, I.-S., Kim, K., Kwon, I.C.: Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice. J. Control. Release 127, 41–49 (2008)

    Article  CAS  Google Scholar 

  17. Yang, S.-J., Shieh, M.-J., Lin, F.-H., Lou, P.-J., Peng, C.-L., Wei, M.-F., Yao, C.-J., Lai, P.-S., Young, T.-H.: Colorectal cancer cell detection by 5-aminolaevulinic acid-loaded chitosan nano-particles. Cancer Lett. 273, 210–220 (2009)

    Article  CAS  Google Scholar 

  18. Wu, Y., Yang, W., Wang, C., Hu, J., Fu, S.: Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate. Int. J. Pharm. 295, 235–245 (2005)

    Article  CAS  Google Scholar 

  19. El-Kemary, M., Douhal, A.: Photochemistry and photophysics of cyclodextrin caged drugs: Relevance to their stability and efficiency. In: Douhal, A. (ed.) Cyclodextrin materials photochemistry, photophysics and photobiology, Chap. 4, pp. 79–106. Elsevier, London (2006)

    Chapter  Google Scholar 

  20. Bautista-Sanchez, A., Kasselouri, A., Desroches, M.C., Blais, J., Maillard, P., de Oliveira, D.M., Tedesco, A.C., Prognon, P., Delaire, J.: Photophysical properties of glucoconjugated chlorins and porphyrins and their associations with cyclodextrins. J. Photochem. Photobiol. B 81, 154–162 (2005)

    Article  CAS  Google Scholar 

  21. Qiu, W.-G., Li, Z.-F., Bai, G.-M., Meng, S.-N., Dai, H.-X., He, H.: Study on the inclusion behavior between meso-tetrakis[4-(3-pyridiniumpropoxy)phenyl]porphyrin tetrakisbromide and β-cyclodextrin derivatives in aqueous solution. Spectrochim. Acta A Mol. Biomol. Spectrosc. 66, 1189–1193 (2007)

    Article  Google Scholar 

  22. Guo, Y.-J., Chao, J.-B., Pan, J.-H.: Study on the interaction of 5-pyridine-10,15,20-tris-(p-chlorophenyl)porphyrin with cyclodextrins and DNA by spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 68, 231–236 (2007)

    Article  Google Scholar 

  23. Rebiero, A.O., Neri, C.R., Iamamoto, Y., Serra, O.A.: Spectroscopic studies on the inclusion complexes of tetrakis(2-hydroxy-(-nitrophenyl)porphyrin with α-cyclodextrin in solution and in sol-gel matrix. Mater. Sci. 20, 21–27 (2002)

    Google Scholar 

  24. Vinodh, M., Alipour, F.H., Mohamod, A.A., Al-Azemi, T.F.: Molecular assemblies of porphyrins and macrocyclic receptors: Recent developments in their synthesis and applications. Molecules 17, 11763–11799 (2012)

    Article  CAS  Google Scholar 

  25. Ricchelli, F.: Photophysical properties of porphyrins in biological membranes. J. Photochem. Photobiol. B29, 109–118 (1995)

    Article  Google Scholar 

  26. Miclea, L.M., Vlaia, L., Vlaia, V., Hădărugă, D.I., Mircioiu, C.: Preparation and characterization of inclusion complexes of meloxicam and α-cyclodextrin and β-cyclodextrin. Farmacia 58, 583–593 (2010)

    CAS  Google Scholar 

  27. Ikeda, A., Satake, S., Mae, T., Ueda, M., Sugikawa, K., Shigeto, H., Funabashi, H., Kuroda, A.: Photodynamic activities of porphyrin derivative–cyclodextrincomplexesbyphotoirradiation. ACS Med. Chem. Lett. 8, 555–559 (2017)

    Article  CAS  Google Scholar 

  28. Tas, A.C.: Synthesis of biomimetic Ca-hydroxyapatite powders at 37 °C in synthetic body fluids. Biomaterials 21, 1429–1438 (2000)

    Article  CAS  Google Scholar 

  29. Heng, C., Zheng, X., Liu, M., Xu, D., Huang, H., Deng, F., Hui, J., Zhang, X., Wei, Y.: Fabrication of luminescent hydroxyapatite nanorods through surface-initiated raft polymerization: characterization, biological imaging and drug delivery applications. Appl. Surf. Sci. 386, 269–275 (2016)

    Article  CAS  Google Scholar 

  30. Varadarajan, N., Balu, R., Rana, D., Ramalingam, M., Kumar, T.S.S.: Accelerated sonochemical synthesis of calcium deficient hydroxyapatite nanoparticles. J. Biomater. Tissue Eng. 4, 295–299 (2014)

    Article  CAS  Google Scholar 

  31. Yoruç, A.B.H., Koca, Y.: Double step stirring: A novel method for precipitation of nano-sized hydroxyapatite powder. Dig. J. Nanomater. Biostruct. 4, 73–81 (2009)

    Google Scholar 

  32. Cai, Y., Liu, Y., Yan, W., Hu, Q., Tao, J., Zhang, M., Shic, Z., Tang, R.: Role of hydroxyapatite nanoparticle size in bone cell proliferation. J. Mater. Chem. 17, 3780–3787 (2007)

    Article  CAS  Google Scholar 

  33. Wikene, K.O., Bruzell, E., Tønnesen, H.H.: Improved antibacterial phototoxicity of a neutral porphyrin in natural deep eutectic solvents. J. Photochem. Photobiol. B. 148, 188–196 (2015)

    Article  CAS  Google Scholar 

  34. Kokubo, T., Kushitani, H., Sakka, S., Kitsugi, T., Yamamuro, T.: Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J. Biomed. Mater. Res. 24, 721–734 (1990)

    Article  CAS  Google Scholar 

  35. Kokubo, T.: Surface chemistry of bioactive glass ceramics. J. Non-Cryst. Solids 120, 138–151 (1990)

    Article  CAS  Google Scholar 

  36. Kokubo, T., Takadama, H.: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27, 2907–2915 (2006)

    Article  CAS  Google Scholar 

  37. Marques, M.R.C., Löbenberg, R., Almukainzi, M.: Simulated biological fluids with possible application in dissolution testing. Dissolut. Technol. 18, 15–21 (2011)

    Article  CAS  Google Scholar 

  38. Bergh, V.J.V., Tønnesen, H.H.: Interactions and solubilization of 5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrin with poloxamer 407 and β-cyclodextrin-derivatives in binary and ternary systems. J. Drug Delivery Sci. Technol. 37, 51–60 (2017)

    Article  Google Scholar 

  39. Harada, A., Takahashi, S.: Preparation and properties of inclusion complexes of 1, 2-dicarbadodecaborane (12) with cyclodextrins. J. Chem. Soc. Chem. Commun. 20, 1352–1353 (1988)

    Article  Google Scholar 

  40. Xiao, X., Liu, R., Qiu, C., Zhu, D., Liu, F.: Biomimetic synthesis of micrometer spherical hydroxyapatite with β-cyclodextrin as template. Mater. Sci. Eng. C Mater. Biol. Appl. 29, 785–790 (2009)

    Article  CAS  Google Scholar 

  41. Chou, Y.-F., Chiou, W.-A., Xu, Y., Dunn, J.C.Y., Wu, B.M.: The effect of pH on the structural evolution of accelerated biomimetic apatite. Biomaterials 25, 5323–5331 (2004)

    Article  CAS  Google Scholar 

  42. Calvo, P., Remuñán-López, C., Vila-Jato, J.L., Alonso, M.J.: Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J. Appl. Polym. Sci. 63, 125–132 (1997)

    Article  CAS  Google Scholar 

  43. Trapani, A., Garcia-Fuentes, M., Alonso, M.J.: Novel drug nanocarriers combining hydrophilic cyclodextrins and chitosan. Nanotechnology 19, 185101 (2008)

    Article  CAS  Google Scholar 

  44. Krauland, A.H., Alonso, M.J.: Chitosan/cyclodextrin nanoparticles as macromolecular drug delivery system. Int. J. Pharm. 340, 134–142 (2007)

    Article  CAS  Google Scholar 

  45. Roik, N.V., Belyakova, L.A.: IR spectroscopy, X-ray diffraction and thermal analysis studies of solid “β-cyclodextrin-para-aminobenzoic acid” inclusion complex. Phys. Chem. Solid State 12, 168–173 (2011)

    CAS  Google Scholar 

  46. Silva, S.M.L., Braga, C.R.C., Fook, M.V.L., Raposo, C.M.O., Carvalho, L.H., Canedo, E.L.: Application of infrared spectroscopy to analysis of chitosan/clay nanocomposites. In: Theophile, T. (ed.) Infrared spectroscopy-materials science, engineering and technology, Chap. 2, pp. 43–62. InTech, Rijeka (2012)

    Google Scholar 

  47. Park, K.H., Kim, S.J., Hwang, M.J., Song, H.J., Park, Y.J.: Biomimetic fabrication of calcium phosphate/chitosan nanohybrid composite in modified simulated body fluids. Express Polym. Lett. 11, 14–20 (2017)

    Article  CAS  Google Scholar 

  48. Arsad, M.S.M., Lee, P.M., Hung, L.K.: Synthesis and characterization of hydroxyapatite nanoparticles and β-TCP particles. 2nd international conference on biotechnology and food science. IPCBEE, Vol. 7, IACSIT Press, Singapore (2011)

  49. Paz, A., Guadarrama, D., López, M., González, J.E., Brizuela, N., Aragón, J.: A comparative study of hydroxyapatite nanoparticles synthesized by different routes. Quim. Nova 35, 1724–1727 (2012)

    Article  CAS  Google Scholar 

  50. Arsad, M.S.M., Lee, P.M., Hung, L.K.: Morphology and particle size analysis of hydroxyapatite micro- and nano-particles. International conference on science and social research (CSSR 2010), Kuala Lumpur, Malaysia (2010)

  51. Chandrasekar, A., Sagadevan, S., Dakshnamoorthy, A.: Synthesis and characterization of nano-hydroxyapatite (n-HAP) using the wet chemical technique. Int. J. Phys. Sci. 8, 1639–1645 (2013)

    Google Scholar 

  52. Namasivayam, S.K.R., Kumar, P., Bharani, R.S.A., Nishanth, A.N., Nivedh, S.K.: Cyclodextrin nanoparticles incorporated fluconazole and medicinal plant extracts preparation for the improved anti-fungal activity against human pathogenic fungi. Int. J. Pharm. Tech. Res. 6, 1756–1761 (2014)

    Google Scholar 

  53. Chander, S., Fuerstenau, D.W.: On the dissolution and interfacial properties of hydroxyapatite. Colloids Surf. 4, 101–120 (1982)

    Article  CAS  Google Scholar 

  54. Pearce, E.I.F.: On the dissolution of hydroxyapatite in acid solutions. J. Dent. Res. 67, 1056–1058 (1988)

    Article  CAS  Google Scholar 

  55. Tung, M.S.: Calcium phosphates: structure, composition, solubility, and stability. In: Amjad, Z. (ed.) Calcium phosphates in biological and industrial systems, pp. 1–19. Kluwer Academic Publishers, Boston (1998)

    Google Scholar 

  56. Ozdemir, F., Evans, I., Bretcanu, O.: Calcium phosphate cements for medical applications. In: Gurbinder Kaur, G. (ed.) Clinical applications of biomaterials: state-of-the-art progress, trends, and novel approaches, pp. 91–121. Springer, Cham (2017)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Mzyène.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mzyène, F., Moulay, S., Bal, K. et al. Biomimetic approach towards the preparation of hydroxyapatite and hydroxyapatite/chitosan/β-cyclodextrin nanoparticles: application to controlled drug release. J Incl Phenom Macrocycl Chem 92, 381–394 (2018). https://doi.org/10.1007/s10847-018-0842-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-018-0842-9

Keywords

Navigation