Advertisement

Investigation of the upper rim binding of triphenylpyrylium cation with p-sulfonatocalix[4]arene

  • Marimuthu Senthilkumaran
  • Ramesh Kumar Chitumalla
  • Ganesan Vigneshkumar
  • Eswaran Rajkumar
  • Paulpandian Muthu Mareeswaran
  • Joonkyung Jang
Original Article
  • 88 Downloads

Abstract

The interaction of 2,4,6-triphenylpyrylium cation with p-sulfonatocalix[4]arene is studied using absorption, emission, NMR and electrochemical techniques. The increase in the absorption is observed with the increase in the concentration of p-sulfonatocalix[4]arene. The emission intensity of 2,4,6-triphenylpyrylium cation is also enhanced in the presence of p-sulfonatocalix[4]arene. The electrochemical titration reveals the presence of host–guest interaction. The NMR analysis explains the upper rim interaction of 2,4,6-triphenypyrylium cation with p-sulfonatocalix[4]arene. The mode of binding is studied using computational methods. The quantum chemical simulations reveal the binding orientation of cationic TPP with p-SC4. The calculated complexation energy (− 33.19 kcal mol−1) indicates the strong binding nature of 2,4,6-triphenylpyrylium cation with p-sulfonatocalix[4]arene.

Keywords

Emission Cyclic voltammetry P-sulfonatocalix[4]arene NMR analysis DFT study 

Notes

Acknowledgements

We acknowledge the financial support of Department of Science and Technology, Ministry of Science and Technology (DST INSPIRE) (Project number—IFA14/CH-147), India and this work was supported by the Korea Research Fellowship Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2016H1D3A1936765).

Supplementary material

10847_2018_809_MOESM1_ESM.docx (1.9 mb)
Supplementary material 1 (DOCX 1920 KB)

References

  1. 1.
    Shinkai, S.: Calixarenes: the third generation of supramolecules. Tetrahedron 49, 8933–8968 (1993)CrossRefGoogle Scholar
  2. 2.
    Shinkai, S.: Calixarenes as new functionalized host molecules. Pure Appl. Chem. 58, 1523–1528 (1986)CrossRefGoogle Scholar
  3. 3.
    Nimse, S.B., Kim, T.: Biological applications of functionalized calixarenes. Chem. Soc. Rev. 42, 366–386 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ikeda, A., Shinkai, S.: Novel cavity design using calix[n]arene skeletons: toward molecular recognition and metal binding. Chem. Rev. 97, 1713–1734 (1997)CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ukhatskaya, E.V., Kurkov, S.V., Matthews, S.E., Loftsson, T.: Encapsulation of drug molecules into calix[n]arene nanobaskets. Role of aminocalix[n]arenes in biopharmaceutical field. J. Pharm. Sci. 102, 3485–3512 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Rodik, R.V., Boyko, V.I., Kalchenko, V.I.: Calixarenes in bio-medical researches. Curr. Med. Chem. 16, 1630–1655 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Gutsche, C.D., Pagoria, P.F.: Calixarenes. 16. Functionalized calixarenes: the direct substitution route. J. Org. Chem. 50, 5795–5802 (1985)CrossRefGoogle Scholar
  8. 8.
    Vicens, J., Böhmer, V.: Calixarenes: A Versatile Class of Macrocyclic Compounds. Springer, Dordrecht (2012)Google Scholar
  9. 9.
    Creaven, B.S., Donlon, D.F., McGinley, J.: Coordination chemistry of calix[4]arene derivatives with lower rim functionalisation and their applications. Coord. Chem. Rev. 253, 893–962 (2009)CrossRefGoogle Scholar
  10. 10.
    Ohto, K.: Review of the extraction behavior of metal cations with calixarene derivatives. Solvent Extract Res. Dev. Jpn. 17, 1–18 (2010)CrossRefGoogle Scholar
  11. 11.
    Conner, M., Janout, V., Regen, S.L.: Synthesis and alkali metal binding properties of “upper rim” functionalized calix[4]arenes. J. Org. Chem. 57, 3744–3746 (1992)CrossRefGoogle Scholar
  12. 12.
    Kumar, S., Kurur, N., Chawla, H., Varadarajan, R.: A convenient one pot one step synthesis of p-nitrocalixarenes via ipsonitration. Synth. Commun. 31, 775–779 (2001)CrossRefGoogle Scholar
  13. 13.
    Shinkai, S., Araki, K., Matsuda, T., Nishiyama, N., Ikeda, H., Takasu, I., Iwamoto, M.: NMR and crystallographic studies of a p-sulfonatocalix(4) arene-guest complex. J. Am. Chem. Soc. 112, 9053–9058 (1990)CrossRefGoogle Scholar
  14. 14.
    Valand, N.N., Patel, M.B., Menon, S.K.: Curcumin-p-sulfonatocalix[4]resorcinarene (p-SC[4]R) interaction: thermo-physico chemistry, stability and biological evaluation. RSC Adv. 5, 8739–8752 (2015)CrossRefGoogle Scholar
  15. 15.
    Shinkai, S., Nagasaki, T., Iwamoto, K., Ikeda, A., He, G.-X., Matsuda, T., Iwamoto, M.: New syntheses and physical properties of p-alkylcalix [n] arenes. Bull. Chem. Soc. Jpn. 64, 381–386 (1991)CrossRefGoogle Scholar
  16. 16.
    Chao, J., Wang, H., Song, K., Wang, Y., Zuo, Y., Zhang, L., Zhang, B.: Host-guest inclusion system of ferulic acid with p-Sulfonatocalix[n]arenes: preparation, characterization and antioxidant activity. J. Mol. Struct. 130, 579–584 (2017)CrossRefGoogle Scholar
  17. 17.
    Shinkai, S., Mori, S., Tsubaki, T., Sone, T., Manabe, O.: New water-soluble host molecules derived from calix [6] arene. Tetrahedron Lett. 25, 5315–5318 (1984)CrossRefGoogle Scholar
  18. 18.
    Danylyuk, O., Leśniewska, B., Suwinska, K., Matoussi, N., Coleman, A.W.: Structural diversity in the crystalline complexes of para-sulfonato-calix[4]arene with bipyridinium derivatives. Cryst. Growth Des. 10, 4542–4549 (2010)CrossRefGoogle Scholar
  19. 19.
    Senthilkumaran, M., Maruthanayagam, K., Vigneshkumar, G., Chitumalla, R.K., Jang, J., Muthu Mareeswaran, P.: Spectral, electrochemical and computational investigations of binding of n-(4-hydroxyphenyl)-imidazole with p-sulfonatocalix[4]arene. J. Fluoresc. 27, 2159–2168 (2017)CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ashwin, B.M., Saravanan, C., Senthilkumaran, M., Sumathi, R., Suresh, P., Muthu Mareeswaran, P.: Spectral and electrochemical investigation of p-sulfonatocalix[4]arene-stabilized vitamin E aggregation. Supramol. Chem. 30, 32–41 (2017)CrossRefGoogle Scholar
  21. 21.
    Guo, D.S., Liu, Y.: Supramolecular chemistry of p-sulfonatocalix[n]arenes and Its Biological applications. Acc. Chem. Res. 47, 1925–1934 (2014)CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Saravanan, C., Senthilkumaran, M., Ashwin, B.M., Suresh, P., Muthu Mareeswaran, P.: Spectral and electrochemical investigation of 1,8-diaminonaphthalene upon encapsulation of p-sulfonatocalix[4]arene. J. Incl. Phenom. Macrocycl. Chem. 88, 239–246 (2014)CrossRefGoogle Scholar
  23. 23.
    Madasamy, K., Gopi, S., Senthilkumaran, M., Radhakrishnan, S., Velayutham, D., Muthu Mareeswaran, P., Kathiresan, M.: A supramolecular investigation on the interactions between ethyl terminated bis-viologen derivatives with sulfonato calix[4]arenes. Chem. Select. 2, 1175–1182 (2017)Google Scholar
  24. 24.
    Shinde, M.N., Barooah, N., Bhasikuttan, A.C., Mohanty, J.: Inhibition and disintegration of insulin amyloid fibrils: a facile supramolecular strategy with p-sulfonatocalixarenes. Chem. Commun. 52, 2992–2995 (2016)CrossRefGoogle Scholar
  25. 25.
    Paclet, M.H., Rousseau, C.F., Yannick, C., Morel, F., Coleman, A.W.: An absence of non-specific immune response towards para-sulphonato-calix[n]arenes. J. Incl. Phenom. Macrocycl. Chem. 55, 353–357 (2006)CrossRefGoogle Scholar
  26. 26.
    Manoj, N., Ajayakumar, G., Gopidas, K., Suresh, C.: Structure absorption spectra correlation in a series of 2,6-dimethyl-4-arylpyrylium salts. J. Phys. Chem. A 110, 11338–11348 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Che, Y., Ma, W., Ji, H., Zhao, J., Zang, L.: Visible photooxidation of dibenzothiophenes sensitized by 2-(4-methoxyphenyl)-4, 6-diphenylpyrylium: an electron transfer mechanism without involvement of superoxide. J. Phys. Chem. B 110, 942–2948 (2006)CrossRefGoogle Scholar
  28. 28.
    Amat, A.M., Arques, A., Bossmann, S.H., Braun, A.M., Miranda, M.A., Vercher, R.F.: Synthesis, loading control and preliminary tests of 2,4,6-triphenylpyrylium supported onto Y-zeolite as solar photocatalyst. Catal. Today 101, 383–388 (2005)CrossRefGoogle Scholar
  29. 29.
    El-Roz, M., Awala, H., Thibault-Starzyk, F., Mintova, S.: Selective response of pyrylium-functionalized nanozeolites in the visible spectrum towards volatile organic compounds. Sens. Actuator B 249, 114–122 (2017)CrossRefGoogle Scholar
  30. 30.
    Shariatgorji, M., Nilsson, A., Källback, P., Karlsson, O., Zhang, X., Svenningsson, P., Andren, P.E.: Pyrylium salts as reactive matrices for MALDI-MS imaging of biologically active primary amines. J. Am. Soc. Mass. Spectrom. 26, 934–939 (2015)CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Bayer, M., König, S.: Pyrylium-based dye and charge tagging in proteomics. Electrophoresis 37, 2953–2958 (2016)CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Manoj, N., Gopidas, K.: Inclusion complexation of a few pyrylium salts by [small beta]-cyclodextrin studied by fluorescence, NMR and laser flash photolysis. Phys. Chem. Chem. Phys. 1, 2743–2748 (1999)CrossRefGoogle Scholar
  33. 33.
    Montes-Navajas, P., Teruel, L., Corma, A., Garcia, H.: Specific binding effects for Cucurbit[8]uril in 2,4,6-triphenylpyrylium–Cucurbit[8]uril host–guest complexes: observation of room-temperature phosphorescence and their application in electroluminescence. Chem. Eur. J. 14, 1762–1768 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Thangavel, A., Sotiriou-Leventis, C., Dawes, R., Leventis, N.: Orientation of pyrylium guests in cucurbituril hosts. J. Org. Chem. 77, 2263–2271 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Athar, M., Lone, M.Y., Jha, P.C.: Recognition of anions using urea and thiourea substituted calixarenes: a density functional theory study of non-covalent interactions. J. Chem. Phys. 501, 68–77 (2018)Google Scholar
  36. 36.
    Ashwin, B.M., Chitumalla, R.K., Herculin Arun Baby, A., Jang, J., Muthu Mareeswaran, P.: Spectral, electrochemical and computational investigations on the host–guest interaction of Coumarin-460 with p-sulfonatocalix [4] arene. J. Incl. Phenom. Macrocycl. Chem. 90, 51–60 (2018)CrossRefGoogle Scholar
  37. 37.
    Saravanan, C., Chitumalla, R.K., Ashwin, B.M., Senthilkumaran, M., Suresh, P., Jang, J., Muthu Mareeswaran, P.: Effectual binding of gallic acid with p-sulfonatocalix[4]arene: an experimental and theoretical interpretation. J. Lumin. 196, 392–398 (2018)CrossRefGoogle Scholar
  38. 38.
    Rathod, N.V., Joshi, K., Jadhav, A.S., Kalyani, V.S., Selvaraj, K., Malkhede, D.D.: A novel interaction study of Th(IV) and Zr(IV) with 4-sulfonatocalix[6]arene: experimental and theoretical investigation. Polyhedron 137, 207–216 (2017)CrossRefGoogle Scholar
  39. 39.
    Muthu Mareeswaran, P., Ethiraj, B., Veerasamy, S., Kim, B., Woo, S.I., Rajagopal, S.: p-Sulfonatocalix [4] arene as carrier for curcumin. New. J. Chem. 38, 1336–1345 (2014)CrossRefGoogle Scholar
  40. 40.
    Muthu Mareeswaran, P., Prakash, M., Subramanian, V., Rajagopal, S.: Recognition of aromatic amino acids and proteins with p-sulfonatocalix[4]arene: a luminescence and theoretical approach. J. Phys. Org. Chem. 25, 1217–1227 (2012)CrossRefGoogle Scholar
  41. 41.
    Thordarson, P.: Determining association constants from titration experiments in supramolecular chemistry. Chem. Soc. Rev. 40, 1305–1323 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ashwin, B.M., Arun Baby, H., Prakash, A., Hochlaf, M., Muthu Mareeswaran, P.: A combined experimental and theoretical study on p-sulfonatocalix[4]arene encapsulated 7-methoxycoumarin. J. Phys. Org. Chem. (2017)  https://doi.org/10.1002/poc.3788e3788-n/a CrossRefGoogle Scholar
  43. 43.
    Ackermann, T., Connors, K.A.: Binding Constants: The Measurement of Molecular Complex Stability. Wiley, New York (1987)Google Scholar
  44. 44.
    Srinivasan, K., Stalin, T., Sivakumar, K.: Spectral and electrochemical study of host–guest inclusion complex between 2,4-dinitrophenol and β-cyclodextrin. Spectrochim. Acta. A 94, 89–100 (2012)CrossRefGoogle Scholar
  45. 45.
    Ashwin, B.M., Vinothini, A., Stalin, T., Muthu Mareeswaran, P.: Synthesis of a safranin T-p-sulfonatocalix[4]arene complex by means of supramolecular complexation. Chem. Select. 2, 931–936 (2017)Google Scholar
  46. 46.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, Revision B.01. Gaussian, Inc., Wallingford (2009)Google Scholar
  47. 47.
    Zhao, Y., Truhlar, D.G.: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008)CrossRefGoogle Scholar
  48. 48.
    Hehre, W.J., Ditchfield, R., Pople, J.A.: Self—consistent molecular orbital methods. Xii. Further extensions of Gaussian—type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 56, 2257–2261 (1972)CrossRefGoogle Scholar
  49. 49.
    Chu, Y., Xue, N., Xu, B., Ding, Q., Feng, Z., Zheng, A., Deng, F.: Mechanism of alkane H/D exchange over zeolite H-ZSM-5 at low temperature: a combined computational and experimental study. Catal. Sci. Technol. 6, 5350–5363 (2016)CrossRefGoogle Scholar
  50. 50.
    Liu, H., Lee, J.Y.: Electric field effects on the adsorption of CO on a graphene nanodot and the healing mechanism of a vacancy in a graphene nanodot. J. Phys. Chem. C 116, 3034–3041 (2012)CrossRefGoogle Scholar
  51. 51.
    Jayanthi, S., Ramamurthy, P.: Photoinduced electron transfer reactions of 2,4,6-triphenylpyrylium: solvent effect and charge-shift type of systems. Phys. Chem. Chem. Phys. 1, 4751–4757 (1999)CrossRefGoogle Scholar
  52. 52.
    Saravanan, C., Ashwin, B.M., Senthilkumaran, M., Muthu Mareeswaran, P.: Supramolecular complexation of biologically important thioflavin-T with p-sulfonatocalix[4]arene. Chem. Select. 3, 2528–2535 (2018)Google Scholar
  53. 53.
    Boys, S.F., Bernardi, F.D.: The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19, 553–566 (1970)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Industrial ChemistryAlagappa UniversityKaraikudiIndia
  2. 2.Department of Nanoenergy EngineeringPusan National UniversityBusanRepublic of Korea
  3. 3.Department of ChemistryMadras Christian College (Autonomous)ChennaiIndia

Personalised recommendations