Advertisement

Supramolecular self-assembly of water-soluble cavitands: investigated by molecular dynamics simulation

  • Kassandra Cendejas
  • Hope E. Parker
  • Dennis Molina
  • Rajib Choudhury
Original Article

Abstract

In this study, we have examined supramolecular self-assembly process of a hydrophobic guest with a water-soluble host known by the trivial name octa acid (OA). Two octa acids form a capsular assembly only in presence of a nonpolar guest(s). Size and shape of the guest control the stoichiometry of the capsular complex. Here, all atom molecular dynamics simulation has been utilized to investigate complex formation mechanisms of a nonpolar guest (nonylbenzene) with two OA cavitands. Nonylbenzene was encapsulated into the nonpolar cavity of OA capsule owing to solvophobic interactions. Upon encapsulation it was twisted and bent due to lack of free space within the capsule. These unusual forms obtained from the simulation study were in accord with experimental findings. The post-complexation attributes of the guest were regulated by the available free space within the OA and favorable non-covalent interactions between the guest and the walls of the OA capsule. In the identical simulation condition two OA cavitands did not form a capsule without a guest, thus indicating requirement of a guest during the self-assembly of OA cavitands.

Keywords

Self-assembly Host–guest complex Molecular docking Molecular dynamics simulation Water-soluble cavitand 

Notes

Acknowledgements

Kassandra Cendejas thanks Arkansas Department of Higher Education for SURF fellowship.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Cram, D. J., Cram, J. M.: Host-guest chemistry. Science. 183, 803–809 (1974)CrossRefGoogle Scholar
  2. 2.
    Stoddart, J. F.: Host-guest chemistry. Annu. Rep. Prog. Chem. Sect. B. 85, 353–386 (1988)CrossRefGoogle Scholar
  3. 3.
    Rebek, J. Jr.: Introduction to the molecular recognition and self-assembly. PNAS. 106, 10423–10424 (2009)CrossRefGoogle Scholar
  4. 4.
    Lehn, J.-M.: Toward self-organization and complex matter. Science. 295, 2400–2403 (2002)CrossRefGoogle Scholar
  5. 5.
    Bejagam, K. K., Fiorin, G., Klein, M. L., Balasubramanian, S.: Supramolecular polymerization of benzene-1,3,5-tricarboxamide: a molecular dynamics simulation study. J. Phys. Chem. B. 118, 5218–5228 (2014)CrossRefGoogle Scholar
  6. 6.
    Wipff, G.: Computational approaches in supramolecular chemistry. Springer, Dordrecht (1994)CrossRefGoogle Scholar
  7. 7.
    Anslyn, E. V., Dougherty, D. A.: Modern physical organic chemistry. University Science Books, Sausalito (2006)Google Scholar
  8. 8.
    Mikulskis, P., Cioloboc, D., Andrejic, M., Khare, S., Brorsson, J., Genheden, S., Mata, R. A., Soderhjelm, P., Ryde, U.: Free-energy perturbation and quantum mechanical study of SAMPL4 octa-acid host-guest binding energies. J. Comput. Aided Mol. Des. 28, 375–400 (2014)CrossRefGoogle Scholar
  9. 9.
    Caldararu, O., Olsson, M. A., Riplinger, C., Neese, F., Ryde, U.: Binding free energies in the SAMPL5 octa-acid host-guest challenge calculated with DFT-D3 and CCSD(T). J. Comput. Aided Mol. Des. 31, 87–106 (2017)CrossRefGoogle Scholar
  10. 10.
    Kulasekharan, R., Jayaraj, N., Porel, M., Choudhury, R., Sundaresan, A. K., Parthasarathy, A., Ottaviani, M. F., Jockush, S., Turro, N. J., Ramamurthy, V.: Guest rotation within a capsuleplex probed by NMR and EPR techniques. Langmuir. 26, 6943–6953 (2010)CrossRefGoogle Scholar
  11. 11.
    Choudhury, R., Barman, A., Prabhakar, R., Ramamurthy, V.: Hydrocarbons depending on the chain length and head group adopt different conformations within a water-soluble nanocapsule: 1H NMR and molecular dynamics studies. J. Phys. Chem. B. 117, 398–407 (2013)CrossRefGoogle Scholar
  12. 12.
    Samanta, S. R., Choudhury, R., Ramamurthy, V.: Photoisomerization and photooxygenation of 1,4-diaryl-1,3-dienes in a confined space. J. Phys. Chem. A. 118, 10554–10562 (2014)CrossRefGoogle Scholar
  13. 13.
    Gupta, S., Choudhury, R., Krois, D., Wagner, G., Brinker, U. H., Ramamurthy, V.: Photochemical generation and reactivity of carbenes within an organic cavitand and capsule: photochemistry of adamantanediazirines. Org. Lett. 13, 6074–6077 (2011)CrossRefGoogle Scholar
  14. 14.
    Choudhury, R., Gupta, S., Da Silva, J. P., Ramamurthy, V.: Deep-cavity cavitand octa acid as a hydrogen donor: photofunctionalization with nitrenes generated from azidoadamantanes. J. Org. Chem. 78, 1824–1832 (2013)CrossRefGoogle Scholar
  15. 15.
    Antony, J., Sure, R., Grimme, S.: Using dispersion-corrected density functional theory to understand supramolecular binding thermodynamics. Chem. Commun. 51, 1764–1774 (2015)CrossRefGoogle Scholar
  16. 16.
    Gibb, C. L. D., Gibb, B. C.: Templated assembly of water-soluble nano-capsules: inter-phase sequestration, storage, and separation of hydrocarbon gases. J. Am. Chem. Soc. 128, 16498–16499 (2006)CrossRefGoogle Scholar
  17. 17.
    Ramamurthy, V., Sivaguru, J.: Supramolecular photochemistry as a potential synthetic tool: photocycloaddition. Chem. Rev. 116, 9914–9993 (2016)CrossRefGoogle Scholar
  18. 18.
    Ramamurthy, V.: Photochemistry within a water-soluble organic capsule. Acc. Chem. Res. 48, 2904–2917 (2015)CrossRefGoogle Scholar
  19. 19.
    Turro, N. J., Ramamurthy, V., Scaiano, J. C.: Modern molecular photochemistry of organic molecules. University Science Books, Sausalito (2010)Google Scholar
  20. 20.
    Jayaraj, N., Zhao, Y., Parthasarathy, A., Porel, M., Liu, R. S. H., Ramamurthy, V.: Nature of supramolecular complexes controlled by the structure of the guest molecules: Formation of octa acid based capsuleplex and cavitandplex. Langmuir. 25, 10575–10586 (2009)CrossRefGoogle Scholar
  21. 21.
    Gibb, C. L. D, Gibb, B. C.: Binding of cyclic carboxylates to octa-acid deep-cavity cavitand. J. Comput. Aided Mol. Des. 28, 319–325 (2014)CrossRefGoogle Scholar
  22. 22.
    Trott, O., Olson, A. J.: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2009)Google Scholar
  23. 23.
    Spoel, V. D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., Berendsen, H. J.: GROMACS: fast, flexible, and free. Comput. Chem. 26, 1701–1718 (2005)CrossRefGoogle Scholar
  24. 24.
    Kaminski, A. G., Friesner, A. R., Tirado-Rives, J., Jorgensen, L. W.: Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J. Phys. Chem. B. 105, 6474–6487 (2001)CrossRefGoogle Scholar
  25. 25.
    Jorgensen, L. W., Tirado-Rives, J.: The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 110, 1657–1666 (1988)CrossRefGoogle Scholar
  26. 26.
    Tzanov, A. T., Guendet, M. A., Tuckerman, M. E.: How accurately do current force fields predict experimental peptide conformations? An adiabatic free energy dynamics study. J. Phys. Chem. B. 118, 6539–6552 (2014)CrossRefGoogle Scholar
  27. 27.
    Halgren, T. A.: Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem. 17, 490–519 (1996)CrossRefGoogle Scholar
  28. 28.
    Ribeiro, A. A. S. T., Horta, B. A. C., Alencastro, R. B. d.: MKTOP: a program for automatic construction of molecular topologies. J. Braz. Chem. Soc. 19, 1433–1435 (2008)CrossRefGoogle Scholar
  29. 29.
    Breneman, C. M., Wiberg, K. B.: Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J. Comput. Chem. 11, 361–373 (1990)CrossRefGoogle Scholar
  30. 30.
    Lee, C., Yang, W., Parr, R. G.: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 37, 785 (1988)CrossRefGoogle Scholar
  31. 31.
    Becke, A. D.: Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A. 38, 3098 (1988)CrossRefGoogle Scholar
  32. 32.
    Frish, M. J., et al.: Gaussian 98, revision A.9. Gaussian Inc., Pittsburgh (1998)Google Scholar
  33. 33.
    Darden, T., York, D., Pederson, L.: Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089 (1993)CrossRefGoogle Scholar
  34. 34.
    Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)CrossRefGoogle Scholar
  35. 35.
    DeLano, W.L.: The PyMOL molecular graphics system. DeLano Scientific, San Carlos (2002)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Physical SciencesArkansas Tech UniversityRussellvilleUSA

Personalised recommendations