Advertisement

3D molecular fragment descriptors for structure–property modeling: predicting the free energies for the complexation between antipodal guests and β-cyclodextrins

  • Andrey Solovev
  • Vitaly Solov’ev
Original Article

Abstract

We report new 3D fragment descriptors to model parameters and properties of stereoisomeric molecules and conformers. New 3D fragment descriptors have been applied to discriminate between stereoisomers in predictive QSPR modeling of the standard free energy (∆G°) for the 1:1 inclusion complexation of 76 chiral guests with β-cyclodextrin (β-CD) and 40 chiral guests with 6-amino-6-deoxy-β-cyclodextrin (am-β-CD) in water at 298 K. The in-house software, mfSpace (Molecular Fragments Space), was used for QSPR modeling, generation and coding of the 3D fragment descriptors. The program implements the Singular Value Decomposition for Multiple Linear Regression analysis as machine learning method. We used ensemble modeling techniques which include the generation of many individual models, the selection of the most relevant ones and followed by their joint application to test compounds, i.e., applying a consensus model for average predictions. The models based on 2D and 3D fragment descriptors provide the best predictions in external fivefold cross-validation: root mean squared error RMSE = 1.1 kJ/mol and determination coefficient \(R_{{det}}^{2}\) = 0.918 (β-CD), RMSE = 0.89 kJ/mol and \(R_{{det}}^{2}\) = 0.910 (am-β-CD).

Keywords

3D fragment descriptors QSPR consensus modeling Prediction of free energy Cyclodextrins Inclusion complexes Chiral recognition 

Notes

Acknowledgements

A.S. gratefully acknowledges Dr. Rimma Akhmetsafina and Dr. Rodriges Zalipynis R.A. for providing useful suggestions for improving software quality.

Supplementary material

10847_2017_739_MOESM1_ESM.sdf (109 kb)
Supplementary material 1 (SDF 108 KB)—Structure data files b-CD_76.SDF and am-b-CD_40.SDF contain the optimized 3D structures of 76 and 40 chiral guests and experimentally estimated standard free energies for the 1:1 inclusion complexation with β-cyclodextrin (β-CD) and 6-amino-6-deoxy-β-cyclodextrin (am-β-CD) in water at 298.15 K.
10847_2017_739_MOESM2_ESM.sdf (207 kb)
Supplementary material 2 (SDF 206 KB)
10847_2017_739_MOESM3_ESM.docx (32 kb)
Supplementary material 3 (DOCX 32 KB)

References

  1. 1.
    Douhal, A. (ed.): Cyclodextrin Materials. Photochemistry, Photophysics and Photobiology. Elsevier, Amsterdam (2006)Google Scholar
  2. 2.
    Dodziuk, H. (ed.): Cyclodextrins and Their Complexes. Chemistry, Analytical Methods, Applications. Wiley-VCH, Weinheim (2006)Google Scholar
  3. 3.
    Jin, Z.-Y.: Cyclodextrin Chemistry. Preparation and Application. World Scientific, Singapore (2013)CrossRefGoogle Scholar
  4. 4.
    Klein, C.T., Polheim, D., Viernstein, H., Wolschann, P.: A method for predicting the free energies of complexation between β-cyclodextrin and guest molecules cyclodextrin chemistry. preparation and application. J. Inclusion Phenom. Macrocycl. Chem. 36, 409–423 (2000)CrossRefGoogle Scholar
  5. 5.
    Solov’ev, V.P., Tsivadze, A.Y.: Supramolecular complexes: determination of stability constants on the basis of various experimental methods. Prot. Metals Phys. Chem. Surf. 51(1), 1–35 (2015)CrossRefGoogle Scholar
  6. 6.
    Matsui, Y., Nishioka, T., Fujita, T.: Biomimetic and Bioorganic Chemistry, pp. 61–89. Springer, Berlin (1985)CrossRefGoogle Scholar
  7. 7.
    Liu, L., Guo, Q.-X.: Wavelet neural network and its application to the inclusion of β-cyclodextrin with benzene derivatives. J. Chem. Inf. Comput. Sci. 39(1), 133–138 (1999)CrossRefGoogle Scholar
  8. 8.
    Suzuki, T., Ishida, M., Fabian, W.M.F.: Classical QSAR and comparative molecular field analyses of the host-guest interaction of organic molecules with cyclodextrins. J. Comput. Aided Mol. Des. 14, 669–678 (2000)CrossRefGoogle Scholar
  9. 9.
    Suzuki, T.: A nonlinear group contribution method for predicting the free energies of inclusion complexation of organic molecules with a- and β-cyclodextrins. J. Chem. Inf. Comput. Sci. 41(5), 1266–1273 (2001)CrossRefGoogle Scholar
  10. 10.
    Bodor, N., Buchwald, P.: Theoretical insights into the formation, structure, and energetics of some cyclodextrin complexes. J. Inclusion Phenom. Macrocycl. Chem. 44, 9–14 (2002)CrossRefGoogle Scholar
  11. 11.
    Faucci, M.T., Melani, F., Mura, P.: Computer-aided molecular modeling techniques for predicting the stability of drug–cyclodextrin inclusion complexes in aqueous solutions. Chem. Phys. Lett. 358, 383–390 (2002)CrossRefGoogle Scholar
  12. 12.
    Katritzky, A.R., Fara, D.C., Yang, H., Karelson, M., Suzuki, T., Solov’ev, V.P., Varnek, A.: Quantitative structure-property relationship modeling of β-cyclodextrin complexation free energies. J. Chem. Inf. Comp. Sci. 44(2), 529–541 (2004)CrossRefGoogle Scholar
  13. 13.
    Steffen, A., Apostolakis, J.: On the ease of predicting the thermodynamic properties of β-cyclodextrin inclusion complexes. Chem. Cent. J. 1(1), 29–39 (2007)CrossRefGoogle Scholar
  14. 14.
    Chari, R., Qureshi, F., Moschera, J., Tarantino, R., Kalonia, D.: Development of improved empirical models for estimating the binding constant of a β-cyclodextrin Inclusion complex. Pharm. Res. 26(1), 161–171 (2009)CrossRefGoogle Scholar
  15. 15.
    Prakasvudhisarn, C., Wolschann, P., Lawtrakul, L.: Predicting complexation thermodynamic parameters of β-cyclodextrin with chiral guests by using swarm intelligence and support vector machines. Int. J. Mol. Sci. 10, 2107–2121 (2009)CrossRefGoogle Scholar
  16. 16.
    Perez-Garrido, A., Helguera, A.M., Cordeiro, M.N.D.S., Escudero, A.G.: QSPR modelling with the topological substructural molecular design approach: β-cyclodextrin complexation. J. Pharm. Sci. 98(12), 4557–4576 (2009)CrossRefGoogle Scholar
  17. 17.
    Connors, K.A.: The stability of cyclodextrin complexes in solution. Chem. Rev. 97(5), 1325–1357 (1997)CrossRefGoogle Scholar
  18. 18.
    Rekharsky, M., Inoue, Y.: Chiral recognition thermodynamics of β-cyclodextrin: the thermodynamic origin of enantioselectivity and the enthalpy-entropy compensation effect. J. Am. Chem. Soc. 122(18), 4418–4435 (2000)CrossRefGoogle Scholar
  19. 19.
    Rekharsky, M.V., Inoue, Y.: Complexation and chiral recognition thermodynamics of 6-Amino-6-deoxy-β-cyclodextrin with anionic, cationic, and neutral chiral guests: counterbalance between van der Waals and Coulombic interactions. J. Am. Chem. Soc. 124(5), 813–826 (2002)CrossRefGoogle Scholar
  20. 20.
    Rekharsky, M.V., Goldberg, R.N., Schwarz, F.P., Tewari, Y.B., Ross, P.D., Yamashoji, Y., Inoue, Y.: Thermodynamic and nuclear magnetic resonance study of the interactions of a- and β-cyclodextrin with model substances: phenethylamine, ephedrines, and related substances. J. Am. Chem. Soc. 117(34), 8830–8840 (1995)CrossRefGoogle Scholar
  21. 21.
    Liu, Y., Yang, E.-C., Yang, Y.-W., Zhang, H.-Y., Fan, Z., Ding, F., Cao, R.: Thermodynamics of the molecular and chiral recognition of cycloalkanols and camphor by modified β-cyclodextrins possessing simple aromatic tethers. J. Org. Chem. 69(1), 173–180 (2004)CrossRefGoogle Scholar
  22. 22.
    Liu, L., Li, W.-G., Guo, Q.-X.: Association constant prediction for the inclusion of α-cyclodextrin with benzene derivatives by an artificial neural network. J. Inclusion Phenom. Macrocycl. Chem. 34, 291–298 (1999)CrossRefGoogle Scholar
  23. 23.
    Loukas, Y.L.: Quantitative structure-binding relationships (QSBR) and artificial neural networks: improved predictions in drug: cyclodextrin inclusion complexes. Int. J. Pharm. 226, 207–211 (2001)CrossRefGoogle Scholar
  24. 24.
    Estrada, E., Perdomo-Lopez, I., Torres-Labandeira, J.J.: Combination of 2D-, 3D-connectivity and quantum chemical descriptors in QSPR. Complexation of a- and β-cyclodextrin with benzene derivatives. J. Chem. Inf. Comput. Sci. 41(6), 1561–1568 (2001)CrossRefGoogle Scholar
  25. 25.
    Jimenez, V., Alderete, J.B.: The role of charge transfer interactions in the inclusion complexation of anionic guests with a-cyclodextrin. Tetrahedron 61, 5449–5456 (2005)CrossRefGoogle Scholar
  26. 26.
    Ghasemi, J.B., Salahinejad, M., Rofouei, M.K., Mousazadeh, M.H.: Docking and 3D-QSAR study of stability constants of benzene derivatives as environmental pollutants with a-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 73, 405–413 (2012)CrossRefGoogle Scholar
  27. 27.
    Klein, C.T., Polheim, D., Viernstein, H., Wolschann, P.: Predicting the free energies of complexation between cyclodextrins and guest molecules: linear versus nonlinear models. Pharm. Res. 17(3), 358–365 (2000)CrossRefGoogle Scholar
  28. 28.
    Buchwald, P.: Complexation thermodynamics of cyclodextrins in the framework of a molecular size-based model for nonassociative organic liquids that includes a modified hydration-shell hydrogen-bond model for water. J. Phys. Chem. B 106(27), 6864–6870 (2002)CrossRefGoogle Scholar
  29. 29.
    Ghasemi, J.B., Salahinejad, M., Rofouei, M.K.: An alignment independent 3D-QSAR study for predicting the stability constants of structurally diverse compounds with β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 71, 195–206 (2011)CrossRefGoogle Scholar
  30. 30.
    Merzlikine, A., Abramov, Y.A., Kowsz, S.J., Thomas, V.H., Mano, T.: Development of machine learning models of β-cyclodextrin and sulfobutylether-β-cyclodextrin complexation free energies. Int. J. Pharm. 418, 207–216 (2011)CrossRefGoogle Scholar
  31. 31.
    Sang, P., Zou, J.-W., Dai, D.-M., Hu, G.-X., Jiang, Y.-J.: Prediction of the complexation of structurally diverse compounds with β-cyclodextrin using structural descriptors derived from electrostatic potentials on molecular surface and different chemometric methods. Chemom. Intell. Lab. Syst. 127, 166–176 (2013)CrossRefGoogle Scholar
  32. 32.
    Veselinović, A.M., Veselinović, J.B., Toropov, A.A., Toropova, A.P., Nikolić, G.M.: In silico prediction of the β-cyclodextrin complexation based on Monte Carlo method. Int. J. Pharm. 495(1), 404–409 (2015)CrossRefGoogle Scholar
  33. 33.
    Todeschini, R., Consonni, V.: Handbook of Molecular Descriptors. Wiley-VCH, Weinheim (2000)CrossRefGoogle Scholar
  34. 34.
    Varnek, A.: Fragment descriptors in structure-property modeling and virtual screening. In: Bajorath, J. (ed.) Chemoinformatics and Computational Chemical Biology, pp. 213–243. Springer, New York (2011)Google Scholar
  35. 35.
    Baskin, I., Varnek, A.: Fragment descriptors in SAR/QSAR/QSPR studies, molecular similarity analysis and in virtual screening. In: Varnek, A., Tropsha, A. (eds.) Chemoinformatics Approaches to Virtual Screening, pp. 1–43. RCS Publishing, Cambridge (2008)Google Scholar
  36. 36.
    Solov’ev, V.P., Varnek, A.A., Wipff, G.: Modeling of ion complexation and extraction using substructural molecular fragments. J. Chem. Inf. Comput. Sci. 40(3), 847–858 (2000)CrossRefGoogle Scholar
  37. 37.
    Varnek, A., Solov’ev, V.P.: “In Silico” design of potential anti-HIV actives using fragment descriptors. Comb. Chem. High Throughput Screen. 8(5), 403–416 (2005)CrossRefGoogle Scholar
  38. 38.
    Katritzky, A.R., Kuanar, M., Slavov, S., Dobchev, D.A., Fara, D.C., Karelson, M., Acree, W.E.J., Solov’ev, V.P., Varnek, A.: Correlation of blood–brain penetration using structural descriptors. Bioorg. Med. Chem. 14(14), 4888–4917 (2006)CrossRefGoogle Scholar
  39. 39.
    Varnek, A., Kireeva, N., Tetko, I.V., Baskin, I.I., Solov’ev, V.P.: Exhaustive QSPR studies of a large diverse set of ionic liquids: how accurately can we predict melting points? J. Chem. Inf. Model. 47(3), 1111–1122 (2007)CrossRefGoogle Scholar
  40. 40.
    Varnek, A., Solov’ev, V.: Quantitative structure-property relationships in solvent extraction and complexation of metals. In: Sengupta, A.K., Moyer, B.A. (eds.) Ion Exchange and Solvent Extraction, A Series of Advances, pp. 319–358. CRC Press, Taylor and Francis Group, Boca Raton (2009)CrossRefGoogle Scholar
  41. 41.
    Solov’ev, V., Oprisiu, I., Marcou, G., Varnek, A.: Quantitative structure–property relationship (QSPR) modeling of normal boiling point temperature and composition of binary azeotropes. Ind. Eng. Chem. Res. 50(24), 14162–14167 (2011)CrossRefGoogle Scholar
  42. 42.
    Solov’ev, V., Kireeva, N., Ovchinnikova, S., Tsivadze, A.: The complexation of metal ions with various organic ligands in water: prediction of stability constants by QSPR ensemble modelling. J. Incl. Phenom. Macrocycl. Chem. 83, 89–101 (2015)CrossRefGoogle Scholar
  43. 43.
    Glavatskikh, M., Madzhidov, T., Solov’ev, V., Marcou, G., Horvath, D., Graton, J., Le Questel, J.-Y., Varnek, A.: Predictive models for halogen-bond basicity of binding sites of polyfunctional molecules. Mol. Inf. 35(2), 70–80 (2016)CrossRefGoogle Scholar
  44. 44.
    Glavatskikh, M., Madzhidov, T., Solov’ev, V., Marcou, G., Horvath, D., Varnek, A.: Predictive models for the free energy of hydrogen bonded complexes with single and cooperative hydrogen bonds. Mol. Inf. 35(11–12), 629–638 (2016)CrossRefGoogle Scholar
  45. 45.
    Varnek, A., Fourches, D., Horvath, D., Klimchuk, O., Gaudin, C., Vayer, P., Solov’ev, V., Hoonakker, F., Tetko, I.V., Marcou, G.: ISIDA—Platform for virtual screening based on fragment and pharmacophoric descriptors. Curr. Comput. Aided Drug Des. 4(3), 191–198 (2008)CrossRefGoogle Scholar
  46. 46.
    Solov’ev, V., Sukhno, I., Buzko, V., Polushin, A., Marcou, G., Tsivadze, A., Varnek, A.: Stability constants of complexes of Zn2+, Cd2+, and Hg2+ with organic ligands: QSPR consensus modeling and design of new metal binders. J. Inclusion Phenom. Macrocycl. Chem. 72(3–4), 309–321 (2012)CrossRefGoogle Scholar
  47. 47.
    Muller, P.H., Neumann, P., Storm, R.: Tafeln der mathematischen Statistik. VEB Fachbuchverlag, Leipzip (1979)Google Scholar
  48. 48.
    Solov’ev, V.P., Varnek, A.A.: EdChemS (Editor of Chemical Structures). http://vpsolovev.ru/programs/ (2008–2017). Accessed 18 Jan 2017
  49. 49.
    Solov’ev, V.P., Varnek, A.A.: EdiSDF (Editor of Structure—Data Files). http://vpsolovev.ru/programs/ (2008–2017). Accessed 18 Jan 2017
  50. 50.
    Varnek, A., Fourches, D., Hoonakker, F., Solov’ev, V.P.: Substructural fragments: an universal language to encode reactions, molecular and supramolecular structures. J. Comput. Aid. Mol. Des. 19(9–10), 693–703 (2005)CrossRefGoogle Scholar
  51. 51.
    HyperChem. http://www.hyper.com (2017). Accessed 18 Jan 2017
  52. 52.
    Blondel, A., Karplus, M.: New formulation for derivatives of torsion angles and improper torsion angles in molecular mechanics: elimination of singularities. J. Comput. Chem. 17(9), 1132–1141 (1996)CrossRefGoogle Scholar
  53. 53.
    Mathematics. How do I calculate a dihedral angle given Cartesian coordinates? http://math.stackexchange.com/questions/47059/how-do-i-calculate-a-dihedral-angle-given-cartesian-coordinates (2016). Accessed 27 Aug 2016
  54. 54.
    The Cambridge Structure Database. http://www.ccdc.cam.ac.uk (2016). Accessed 9 Sept 2016
  55. 55.
    Ou, G.C., Li, Z.Z., Zhang, M., Yuan, X.Y.: Chiral resolution of L- and D-alanine and a racemic macrocyclic nickel(II) complex: synthesis and crystal structures. Transit. Met. Chem. 39, 135–140 (2014)CrossRefGoogle Scholar
  56. 56.
    Solov’ev, V.P., Kireeva, N., Tsivadze, A.Y., Varnek, A.: QSPR ensemble modelling of alkaline-earth metal complexation. J. Incl. Phenom. Macrocycl. Chem. 76(1–2), 159–171 (2013)CrossRefGoogle Scholar
  57. 57.
    Zhokhova, N.I., Baskin, I.I., Palyulin, V.A., Zefirov, A.N., Zefirov, N.S.: Fragmental descriptors with labeled atoms and their application in QSAR/QSPR studies. Dokl. Chem. 417(2), 282–284 (2007)CrossRefGoogle Scholar
  58. 58.
    Kubinyi, H.: Variable selection in QSAR studies. II. A highly efficient combination of systematic search and evolution. Quant. Struct. Act. Relat. 13(4), 393–401 (1994)Google Scholar
  59. 59.
    Ali, M., Pant, M., Abraham, A.: A simplex differential evolution algorithm: development and applications. Trans. Inst. Meas. Control. 34(6), 691–704 (2011)CrossRefGoogle Scholar
  60. 60.
    Mohamed, A.W., Sabry, H.Z., Khorshid, M.: An alternative differential evolution algorithm for global optimization. Adv. Res. 3, 149–165 (2012)CrossRefGoogle Scholar
  61. 61.
    Wang, Y., Chen, X., Gui, W., Yang, C., Caccetta, L., Xu, H.: A hybrid multiobjective differential evolution algorithm and its application to the optimization of grinding and classification. J. Appl. Math. 2013, 1–15 (2013)Google Scholar
  62. 62.
    Dalby, A., Nourse, J.G., Hounshell, W.D., Gushurst, A.K.I., Grier, D.L., Leland, B.A., Laufer, J.: Description of several chemical structure file formats used by computer programs developed at Molecular Design Limited. J. Chem. Inf. Comput. Sci. 32(3), 244–255 (1992)CrossRefGoogle Scholar
  63. 63.
    Hedderich, J., Sachs, L.: Angewandte Statistik. Methodensammlung mit R. Springer, Berlin (2016)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.School of Software Engineering, Faculty of Computer ScienceNational Research University Higher School of EconomicsMoscowRussia
  2. 2.A.N. Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations