Calixarenes based materials for gas sensing applications: a review

  • Satish Kumar
  • Shashi Chawla
  • Manchong Chinlun Zou
Review Article


The development of sensing materials based on calixarenes to enable the detection, monitoring, and quantification of hazardous gases or pollutants present in our environment is discussed in the present review due to the enormous importance of this area. Calix[n]arenes are being used as molecular receptors to trap gaseous vapors at very low concentration owing to variable cavity dimensions and the presence of two distinct (hydrophobic and hydrophilic) regions. Calixarenes are sensitive and specific for detection due to their porous structure, which allows diffusion inside the film. A number of surface characterization techniques including mass sensitive quartz micro balance/quartz crystal microbalance, the Langmuir–Blodget films, and surface acoustic wave oscillator are being employed along with different calixarenes to measure the interaction or association between host (calixarenes) and the guest (gas molecules). Combining different scaffolds offer an additional advantage in the search for successful new sensing devices. The review highlights the new development in the area of monitoring and detection of hazardous gases through less time consuming, sensitive, reproducible and reliable monitoring techniques involving the use of appropriate calix[n]arene as sensing materials.

Graphical Abstract


Calixarenes Gas detection Environmental pollution Hazardous gases 



Authors are thankful to UGC (No. 41-235/2012), DRDO (ERIP/ER/DG-NSM/990116702/M01/1645) and DST (SR/FT/054/2012) for providing the funds to support the research work. SK and MCZ are thankful to the principal, St. Stephen’s College for providing the necessary facilities. SC is greatly indebted to Dr. Ashok K. Chauhan (Founder President), Prof. B. P. Singh (Senior Director) and Prof. Rekha Agarwal (Director) Amity School of Engineering & Technology for their continued motivation, encouragement, support.


  1. 1.
    Francová, A., Chrastný, V., Šillerová, H., Vítková, M., Kocourková, J., Komárek, M.: Evaluating the suitability of different environmental samples for tracing atmospheric pollution in industrial areas. Environ. Pollut. 220, 286–297 (2017)CrossRefGoogle Scholar
  2. 2.
    Kabashima, K., Otsuka, A., Nomura, T.: Linking air pollution to atopic dermatitis. Nat. Immunol. 18(1), 5–6 (2017). doi: 10.1038/ni.3615 CrossRefGoogle Scholar
  3. 3.
    Jacobson, M.Z.: Review of solutions to global warming, air pollution, and energy security. Energy Environ. Sci. 2(2), 148–173 (2009)CrossRefGoogle Scholar
  4. 4.
    Ramanathan, V., Feng, Y.: Air pollution, greenhouse gases and climate change: global and regional perspectives. Atmos. Environ. 43(1), 37–50 (2009)CrossRefGoogle Scholar
  5. 5.
    Smith, W.H.: Air Pollution and Forests. Interactions Between Air Contaminants and Forest Ecosystems. Springer, New York (1981)Google Scholar
  6. 6.
    Appelo, C.A.J., Postma, D.: Geochemistry, Groundwater and Pollution. CRC Press, New York (2005)CrossRefGoogle Scholar
  7. 7.
    Olness, A.: Water quality: prevention, identification and management of diffuse pollution. J. Environ. Qual. 24(2), 383–383 (1995)CrossRefGoogle Scholar
  8. 8.
    Sartor, J.D., Boyd, G.B., Agardy, F.J.: Water pollution aspects of street surface contaminants. J. Water Pollut. Control Fed. 46, 458–467 (1974)Google Scholar
  9. 9.
    Brookes, P.: The use of microbial parameters in monitoring soil pollution by heavy metals. Biol. Fertil. Soils 19(4), 269–279 (1995)CrossRefGoogle Scholar
  10. 10.
    Verschueren, K.: Handbook of Environmental Data on Organic Chemicals, vol. 1, 4th edn. Wiley, Hoboken (2001)Google Scholar
  11. 11.
    Gifford, F., Hanna, S.: Modelling urban air pollution. Atmos. Environ. 7(1), 131–136 (1973)CrossRefGoogle Scholar
  12. 12.
    Elsom, D.M.: Atmospheric Pollution: A Global Problem. Blackwell, Oxford (1993)Google Scholar
  13. 13.
    Molina, M.J., Molina, L.T.: Megacities and atmospheric pollution. J. Air Waste Manag. 54(6), 644–680 (2004)CrossRefGoogle Scholar
  14. 14.
    Tan, W.C., Qiu, D., Liam, B.L., Ng, T.P., Lee, S.H., van Eeden, S.F., D’Yachkova, Y., Hogg, J.C.: The human bone marrow response to acute air pollution caused by forest fires. Am. J. Respir. Crit. Care Med. 161(4), 1213–1217 (2000)CrossRefGoogle Scholar
  15. 15.
    Stedman, J.R.: The predicted number of air pollution related deaths in the UK during the August 2003 heatwave. Atmos. Environ. 38(8), 1087–1090 (2004)CrossRefGoogle Scholar
  16. 16.
    Abbaspour, M., Mansouri, N.: City hazardous gas monitoring network. J. Loss Prev. Process Ind. 18(4), 481–487 (2005)CrossRefGoogle Scholar
  17. 17.
    Duan, W., Chen, G., Ye, Q., Chen, Q.: The situation of hazardous chemical accidents in China between 2000 and 2006. J. Hazard. Mater. 186(2), 1489–1494 (2011)CrossRefGoogle Scholar
  18. 18.
    Gutsche, C.D.: Calixarenes, Monographs in Supramolecular Chemistry, vol. 1. Royal Society of Chemistry, Cambridge (1989)Google Scholar
  19. 19.
    Gutsche, C.D.: Calixarenes Revisited. Royal Society of Chemistry, Cambridge (1998)Google Scholar
  20. 20.
    Chawla, H.M., Pant, N., Kumar, S., Kumar, N., Black, D.S.C.: In Chemical Sensors: Fundamentals of Sensing Material. In: Korotcenkov, G. (ed.) Polymers and Other Materials, vol. 3. Momentum Press, New York (2010)Google Scholar
  21. 21.
    Liu, Y., Wang, H., Zhang, H.Y., Wang, L.H., Song, Y.: Compactness of linear aggregation controlled by molecular selective binding of bridged bis(beta-cyclodextrin)s. Chem. Lett. 32(10), 884–885 (2003). doi: 10.1246/cl.2003.884 CrossRefGoogle Scholar
  22. 22.
    Laza-Knoerr, A.L., Gref, R., Couvreur, P.: Cyclodextrins for drug delivery. J. Drug Target. 18(9), 645–656Google Scholar
  23. 23.
    Del Valle, E.M.M.: Cyclodextrins and their uses: a review. Process Biochem. 39(9), 1033–1046 (2004)CrossRefGoogle Scholar
  24. 24.
    Lamb, J.D., Christensen, J.J., Izatt, S.R., Bedke, K., Astin, M.S., Izatt, R.M.: Effects of salt concentration and anion on the rate of carrier-facilitated transport of metal cations through bulk liquid membranes containing crown ethers. J. Am. Chem. Soc. 102(10), 3399–3403 (1980)CrossRefGoogle Scholar
  25. 25.
    Gokel, G.W.: Crown Ethers and Cryptands. The Royal Society of Chemistry, London (1991)Google Scholar
  26. 26.
    Chawla, H.M., Srivastava, R., Sahu, S.N., Kumar, S., Upreti, S.: Synthesis and evaluation of neutral anion receptors based on acylhydrazide-appended calix[4]arenes. Supramol. Chem. 24(9), 672–683 (2012). doi: 10.1080/10610278.2012.695788 CrossRefGoogle Scholar
  27. 27.
    Chawla, H.M., Sahu, S.N., Shrivastava, R., Kumar, S.: Calix[4]arene-based ditopic receptors for simultaneous recognition of fluoride and cobalt(II) ions. Tetrahedron Lett. 53(17), 2244–2247 (2012). doi: 10.1016/j.tetlet.2012.02.083 CrossRefGoogle Scholar
  28. 28.
    Chawla, H.M., Hundal, G., Kumar, S., Singh, P.: Synthesis and evaluation of novel 1,3-bridged calix[4]arene-crown ethers for selective interaction with Na+/K+ cations. J. Incl. Phenom. Macrocycl. Chem. 72(3–4), 323–330 (2012). doi: 10.1007/s10847-011-9979-5 CrossRefGoogle Scholar
  29. 29.
    Chawla, H., Kumar, S., Pant, N., Santra, A., Sriniwas, K., Kumar, N., Black, D.: Synthesis and evaluation of deep cavity imidazolyl calix[n]arenes. J. Incl. Phenom. Macrocycl. Chem. 71(1–2), 169–178 (2011). doi: 10.1007/s10847-010-9921-2 CrossRefGoogle Scholar
  30. 30.
    Kumar, S., Chawla, H.M., Varadarajan, R.: A convenient single step synthesis of p-thiomethylmethylcalixarenes and metal ion extraction studies. Tetrahedron 59(38), 7481–7484 (2003). doi: 10.1016/s0040-4020(03)01209-2 CrossRefGoogle Scholar
  31. 31.
    Atwood, J.L., Barbour, L.J., Jerga, A.: A new type of material for the recovery of hydrogen from gas mixtures. Angew. Chem. Int. Ed. 43(22), 2948–2950 (2004)CrossRefGoogle Scholar
  32. 32.
    Dickert, F.L., Baeumler, U.P.A., Stathopulos, H.: Mass-sensitive solvent vapor detection with calix[4]resorcinarenes: tuning sensitivity and predicting sensor effects. Anal. Chem. 69(6), 1000–1005 (1997). doi: 10.1021/ac9605859 CrossRefGoogle Scholar
  33. 33.
    Farrukh, S., Minhas, F.T., Hussain, A., Memon, S., Bhanger, M.I., Mujahid, M.: Preparation, characterization, and applicability of novel calix[4]arene-based cellulose acetate membranes in gas permeation. J. Appl. Polym. Sci. (2014). doi: 10.1002/app.39985 Google Scholar
  34. 34.
    Auge, J., Hauptmann, P., Hartmann, J., Rösler, S., Lucklum, R.: Versatile microcontrolled gas sensor array system using the quartz microbalance principle and pattern recognition methods. Sens. Actuators B 26(1–3), 181–186 (1995)CrossRefGoogle Scholar
  35. 35.
    Timmer, B., Olthuis, W., Van Den Berg, A.: Ammonia sensors and their applications—a review. Sens. Actuators B 107(2), 666–677 (2005). doi: 10.1016/j.snb.2004.11.054 CrossRefGoogle Scholar
  36. 36.
    Grady, T., Butler, T., MacCraith, B.D., Diamond, D., McKervey, M.A.: Optical sensor for gaseous ammonia with tuneable sensitivity. Analyst 122(8), 803–806 (1997)CrossRefGoogle Scholar
  37. 37.
    McCarrick, M., Harris, S.J., Diamond, D.: Assessment of a chromogenic calix[4]arene for the rapid colorimetric detection of trimethylamine. J. Mater. Chem. 4(2), 217–221 (1994)CrossRefGoogle Scholar
  38. 38.
    Lavrik, N.V., DeRossi, D., Kazantseva, Z.I., Nabok, A.V., Nesterenko, B.A., Piletsky, S.A., Kalchenko, V.I., Shivaniuk, A.N., Markovskiy, L.N.: Composite polyaniline/calixarene Langmuir–Blodgett films for gas sensing. Nanotechnology 7(4), 315–319 (1996)CrossRefGoogle Scholar
  39. 39.
    Loughran, M., Diamond, D.: Monitoring of volatile bases in fish sample headspace using an acidochromic dye. Food Chem. 69(1), 97–103 (2000)CrossRefGoogle Scholar
  40. 40.
    Liu, C.J., Lin, J.T., Wang, S.H., Lin, L.G.: Chromogenic calixarene sensors for amine detection. Chem. Sens. 20(Suppl. B), 362–363 (2004)Google Scholar
  41. 41.
    Liu, C.J., Lin, J.T., Wang, S.H., Jiang, J.C., Lin, L.G.: Chromogenic calixarene sensors for amine detection. Sens. Actuators B 108(1–2), 521–527 (2005)CrossRefGoogle Scholar
  42. 42.
    Li, Y.Y., He, X.W., Zhang, G.Z., He, J.Q., Cheng, J.P.: Recognition of organic amines and alcohols using quartz crystal microbalance coated with novel amino acid-bearing 1,3-bridged calix[4]arenes. Acta Chim. Sinica 62(2), 194–198 (2004)Google Scholar
  43. 43.
    Li, Y.Y., Yin, H.Z., He, X.W., Chen, L.X., Zhang, G.Z., He, J.Q.: QCM coated with self-assembled cystine-bearing 1,3-bridged calix[4]arenes for recognizing gas-phase butylamines. Chin. J. Chem. 23(5), 571–575 (2005)CrossRefGoogle Scholar
  44. 44.
    Brittle, S.A., Richardson, T.H., Hutchinson, J., Hunter, C.A.: Comparing zinc and manganese porphyrin LB films as amine vapour sensing materials. Colloid Surf. A 321(1–3), 29–33 (2008). doi: 10.1016/j.colsurfa.2008.02.042 CrossRefGoogle Scholar
  45. 45.
    Cao, Z., Li, T., Yang, X.H., Wang, K.M., Lin, H.G., Yu, R.Q.: Studies on thickness-shear-mode acoustic wave pyridine sensor coated with Calix[4]arenes. Chem. J. Chin. Univ.-Chin. 19(6), 882–884 (1998)Google Scholar
  46. 46.
    Kamata, H., Ueno, S.-i., Sato, N., Naito, T.: Mercury oxidation by hydrochloric acid over TiO2 supported metal oxide catalysts in coal combustion flue gas. Fuel Process. Technol. 90(7), 947–951 (2009)CrossRefGoogle Scholar
  47. 47.
    Canakci, M., Van Gerpen, J.: Biodiesel production via acid catalysis. Trans. ASAE 42(5), 1203–1210 (1999)CrossRefGoogle Scholar
  48. 48.
    Bastidas, J.M., Polo, J.L., Cano, E.: Substitutional inhibition mechanism of mild steel hydrochloric acid corrosion by hexylamine and dodecylamine. J. Appl. Electochem. 30(10), 1173–1177 (2000). doi: 10.1023/a:1004036430497 CrossRefGoogle Scholar
  49. 49.
    Bolstad-Johnson, D.M., Burgess, J.L., Crutchfield, C.D., Storment, S., Gerkin, R., Wilson, J.R.: Characterization of firefighter exposures during fire overhaul. Am. Ind. Hyg. Assoc. J. 61(5), 636–641 (2000)Google Scholar
  50. 50.
    Pfeiffer, S., Mayer, B., Hemmens, B.: Nitric oxide: chemical puzzles posed by a biological messenger. Angew. Chem. Int. Ed. 38(12), 1714–1731 (1999). doi: 10.1002/(sici)1521-3773(19990614)38:12<1714::aid-anie1714>;2-3 CrossRefGoogle Scholar
  51. 51.
    Ignarro, L.J.: Nitric Oxide: Biology and Pathobiology, 2nd edn. Academic press, Cambridge (2000)Google Scholar
  52. 52.
    Butler, A.R., Nicholson, R.: Life, Death and Nitric Oxide, vol. 33. Royal Society of Chemistry, Cambridge (2003)Google Scholar
  53. 53.
    Wanigasekara, E., Gaeta, C., Neri, P., Rudkevich, D.M.: Nitric oxide release mediated by calix[4]hydroquinones.Org. Lett. 10(6), 1263–1266 (2008). doi: 10.1021/ol800156m CrossRefGoogle Scholar
  54. 54.
    Wanigasekara, E., Leontiev, A.V., Organo, V.G., Rudkevich, D.M.: Supramolecular, calixarene-based complexes that release NO gas. Eur. J. Org. Chem. 2007(14), 2254–2256 (2007). doi: 10.1002/ejoc.200700173
  55. 55.
    Nathan, C., Xie, Q.-W: Nitric oxide synthases: roles, tolls, and controls. Cell 78(6), 915–918 (1994). doi: 10.1016/0092-8674(94)90266-6 CrossRefGoogle Scholar
  56. 56.
    Wood, A.J., Parker, J.D., Parker, J.O.: Nitrate therapy for stable angina pectoris. N. Engl. J. Med. 338(8), 520–531 (1998)CrossRefGoogle Scholar
  57. 57.
    Murrell, W.: Nitro-glycerine as a remedy for angina pectoris. Lancet 113(2894), 225–227 (1879)CrossRefGoogle Scholar
  58. 58.
    Wang, P.G., Xian, M., Tang, X., Wu, X., Wen, Z., Cai, T., Janczuk, A.J.: Nitric oxide donors: chemical activities and biological applications. Chem. Rev. 102(4), 1091–1134 (2002). doi: 10.1021/cr000040l CrossRefGoogle Scholar
  59. 59.
    Lang, J.D. Jr., Smith, A.B., Brandon, A., Bradley, K.M., Liu, Y., Li, W., Crowe, D.R., Jhala, N.C., Cross, R.C., Frenette, L.: A randomized clinical trial testing the anti-inflammatory effects of preemptive inhaled nitric oxide in human liver transplantation. PLoS ONE 9(2), e86053 (2014)CrossRefGoogle Scholar
  60. 60.
    Rathore, R., Lindeman, S.V., Rao, K., Sun, D., Kochi, J.K.: Guest penetration deep within the cavity of calix[4]arene hosts: the tight binding of nitric oxide to distal (cofacial) aromatic groups. Angew. Chem. Int. Ed. 39(12), 2123–2127 (2000)CrossRefGoogle Scholar
  61. 61.
    Botta, B., D’Acquarica, I., Monache, G.D., Nevola, L., Tullo, D., Ugozzoli, F., Pierini, M.: Nitrosonium complexes of resorc[4]arenes: spectral, kinetic, and theoretical studies. J. Am. Chem. Soc. 129(36), 11202–11212 (2007). doi: 10.1021/ja072855i CrossRefGoogle Scholar
  62. 62.
    Organo, V.G., Leontiev, A.V., Sgarlata, V., Dias, H.V.R., Rudkevich, D.M.: Supramolecular features of calixarene-based synthetic nanotubes. Angew. Chem. Int. Ed. 44(20), 3043–3047 (2005)CrossRefGoogle Scholar
  63. 63.
    Organo, V.G., Rudkevich, D.M.: Emerging host-guest chemistry of synthetic nanotubes. Chem. Commun. (38), 3891–3899 (2007). doi: 10.1039/b704231k
  64. 64.
    Gambert, R.: Device for the measurement of low partial pressures of nitrogen monoxide in breath by preconcentration on a calixarene layer. Application: DE, DE Patent 2001-10130296, 10130296Google Scholar
  65. 65.
  66. 66.
  67. 67.
    Sloan, E.D. Jr., Koh, C.: Clathrate Hydrates of Natural Gases. CRC Press, Boca Raton (2007)CrossRefGoogle Scholar
  68. 68.
    Kitagawa, S., Kitaura, R., Noro, S.I.: Functional porous coordination polymers. Angew. Chem. Int. Ed. 43(18), 2334–2375 (2004)CrossRefGoogle Scholar
  69. 69.
    Leontiev, A.V., Rudkevich, D.M.: Encapsulation of gases in the solid state. Chem. Commun. (13), 1468–1469 (2004)Google Scholar
  70. 70.
    Rudkevich, D.: Sensing and fixation of NO2 by calixarenes. Kem. Ind. 54(2), 57–63 (2005)Google Scholar
  71. 71.
  72. 72.
    Kang, Y.L., Rudkevich, D.M.: Polymer-supported calix[4]arenes for sensing and conversion of NO2/N2O4. Tetrahedron 60(49), 11219–11225 (2004). doi: 10.1016/j.tet.2004.08.063 CrossRefGoogle Scholar
  73. 73.
    Organo, V.G., Zyryanov, G.V., Rudkevich, D.M.: Synthetic nanotubes: new molecular containers for NO2/N2O4 fixation. In: Abstracts of papers, 227th ACS National Meeting, Anaheim, CA, United States, March 28–April 1, 2004, ORGN-379, 2004Google Scholar
  74. 74.
    Zyryanov, G.V., Kang, Y., Rudkevich, D.M.: Sensing and fixation of NO2/N2O4 by calix[4]arenes. J. Am. Chem. Soc. 125(10), 2997–3007 (2003). doi: 10.1021/ja029166l CrossRefGoogle Scholar
  75. 75.
    Leontiev, A.V., Organo, V.G., Kang, Y., Rudkevich, D.M.: Calixarenes for supramolecular fixation of NO2. In: Abstracts, 60th Southwest regional meeting of the American Chemical Society, Fort Worth, TX, United States, September 29-O, SEPT04-368, 2004Google Scholar
  76. 76.
    Rudkevich, D.M.: Supramolecular fixation of NOx gases. In: Abstracts of papers, 227th ACS National Meeting, Anaheim, CA, United States, March 28–April 1, 2004, ORGN-623, 2004Google Scholar
  77. 77.
    Rudkevich, D.M.: Methods, systems, and uses for calixarenes. Application: US, US Patent 2003-643160, 2005063861Google Scholar
  78. 78.
    Rudkevich, D.M., Kang, Y., Leontiev, A.V., Organo, V.G., Zyryanov, G.V.: Molecular containers for NOx gases. Supramol. Chem. 17(1–2), 93–99 (2005)CrossRefGoogle Scholar
  79. 79.
    Rudkevich, D.M.: Sensing and fixation of NO2 by calixarenes. Kem. Ind. 54(2), 57–63 (2005)Google Scholar
  80. 80.
    Richardson, T.H., Brook, R.A., Davis, F., Hunter, C.A.: The NO2 gas sensing properties of calixarene/porphyrin mixed LB films. Colloid Surf. A 284, 320–325 (2006). doi: 10.1016/j.colsurfa.2005.11.076 CrossRefGoogle Scholar
  81. 81.
    Poplin, J.H., Rudkevich, D.M., Swatloski, R.P., Rogers, R.D.: Development of ionic liquid membranes for NOx gas detection and storage utilizing calix[4]arenes. ECS Trans. 3(38), 105–108 (2007). doi: 10.1149/1.2806957 CrossRefGoogle Scholar
  82. 82.
    Rogers, R., Poplin, J.H., Rudkevich, D.M.: New platforms for immobilization of calixarenes for gas-sensing and trapping. In: Abstracts of papers, 233rd ACS National Meeting, Chicago, IL, United States, March 25–29, 2007, IEC-042, 2007Google Scholar
  83. 83.
    Hines, J.H., Wanigasekara, E., Rudkevich, D.M., Rogers, R.D.: Calix[4]arenes immobilized in a cellulose-based platform for entrapment and detection of NOx gases. J. Mater. Chem. 18(34), 4050–4055 (2008). doi: 10.1039/b803289k CrossRefGoogle Scholar
  84. 84.
    Ohira, S.I., Wanigasekar, E., Rudkevich, D.M., Dasgupta, P.K.: Sensing parts per million levels of gaseous NO2 by a optical fiber transducer based on calix[4]arenes. Talanta 77(5), 1814–1820 (2009). doi: 10.1016/j.talanta.2008.10.024 CrossRefGoogle Scholar
  85. 85.
    Khabibullin, A.A., Safina, G.D., Ziganshin, M.A., Gorbatchuk, V.V.: Thermal analysis of charge-transfer complex formed by nitrogen dioxide and substituted calix[4]arene. J. Therm. Anal. Calorim. 110(3), 1309–1313 (2012). doi: 10.1007/s10973-011-2105-5 CrossRefGoogle Scholar
  86. 86.
    Roales, J., Pedrosa, J.M., Castillero, P., Cano, M., Richardson, T.H.: Optimization of mixed Langmuir–Blodgett films of a water insoluble porphyrin in a calixarene matrix for optical gas sensing. Thin Solid Films 519(6), 2025–2030 (2011). doi: 10.1016/j.tsf.2010.10.038 CrossRefGoogle Scholar
  87. 87.
    Evyapan, M., Dunbar, A.D.F.: Improving the selectivity of a free base tetraphenylporphyrin based gas sensor for NO2 and carboxylic acid vapors. Sens. Actuator B 206, 74–83 (2015). doi: 10.1016/j.snb.2014.09.023 CrossRefGoogle Scholar
  88. 88.
    Gusak, A.S., Ivanova, E.A., Prokhorova, P.E., Rusinov, G.L., Verbitskiy, E.V., Morzherin, Y.Y.: Synthesis and use of polymer-immobilized calix[4]arene derivatives as molecular containers for nitrous gases. Russ. Chem. Bull. 63(6), 1395–1398 (2014). doi: 10.1007/s11172-014-0609-4 CrossRefGoogle Scholar
  89. 89.
    Evyapan, M., Dunbar, A.D.F.: Controlling surface adsorption to enhance the selectivity of porphyrin based gas sensors. Appl. Surf. Sci. 362, 191–201 (2016). doi: 10.1016/j.apsusc.2015.11.210 CrossRefGoogle Scholar
  90. 90.
    Atwood, J.L., Barbour, L.J., Jerga, A., Schottel, B.L.: Guest transport in a nonporous organic solid via dynamic van der Waals cooperativity. Science 298(5595), 1000–1002 (2002). doi: 10.1126/science.1077591 CrossRefGoogle Scholar
  91. 91.
    Atwood, J.L., Barbour, L.J., Jerga, A.: Storage of methane and freon by interstitial van der Waals confinement. Science 296(5577), 2367–2369 (2002). doi: 10.1126/science.1072252 CrossRefGoogle Scholar
  92. 92.
    Thallapally, P.K., Kirby, K.A., Atwood, J.L.: Comparison of porous and nonporous materials for methane storage. New J. Chem. 31(5), 628–630 (2007)CrossRefGoogle Scholar
  93. 93.
    Thallapally, P.K., Lloyd, G.O., Wirsig, T.B., Bredenkamp, M.W., Atwood, J.L., Barbour, L.J.: Organic crystals absorb hydrogen gas under mild conditions. Chem. Commun. (42), 5272–5274 (2005). doi: 10.1039/b511341e
  94. 94.
    Thallapally, P.K., Wirsig, T.B., Barbour, L.J., Atwood, J.L.: Crystal engineering of nonporous organic solids for methane sorption. Chem. Commun. (35), 4420–4422 (2005). doi: 10.1039/b507406a
  95. 95.
    Atwood, J.L., Barbour, L.J., Thallapally, P.K., Wirsig, T.B.: A crystalline organic substrate absorbs methane under STP conditions. Chem. Commun. (1), 51–53 (2005). doi: 10.1039/b416752j
  96. 96.
    Thallapally, P.K., Dobrzańska, L., Gingrich, T.R., Wirsig, T.B., Barbour, L.J., Atwood, J.L.: Acetylene absorption and binding in a nonporous crystal lattice. Angew. Chem. Int. Ed. 45(39), 6506–6509 (2006). doi: 10.1002/anie.200601391 CrossRefGoogle Scholar
  97. 97.
    Ripmeester, J.A., Enright, G.D., Ratcliffe, C.I., Udachin, K.A., Moudrakovski, I.L.: What we have learned from the study of solid p-tert-butylcalix[4]arene compounds. Chem. Commun. (48), 4986–4996 (2006). doi: 10.1039/b605275d
  98. 98.
    Brouwer, E.B., Enright, G.D., Udachin, K.A., Lang, S., Ooms, K.J., Halchuk, P.A., Ripmeester, J.A.: The complex relationship between guest-free polymorphic products and desolvation of p-tert-butylcalix[4]arene inclusion compounds. Chem. Commun. (12), 1416–1417 (2003). doi: 10.1039/b301739g
  99. 99.
    Dalgarno, S.J., Thallapally, P.K., Barbour, L.J., Atwood, J.L.: Engineering void space in organic van der Waals crystals: calixarenes lead the way. Chem. Soc. Rev. 36(2), 236–245 (2007)CrossRefGoogle Scholar
  100. 100.
    Atwood, J.L., Barbour, L.J., Lloyd, G.O., Thallapally, P.K.: Polymorphism of pure p-tert-butylcalix[4]arene: subtle thermally-induced modifications. Chem. Commun. (8), 922–923 (2004). doi: 10.1039/b402452b
  101. 101.
    Ozmen, M., Ozbek, Z., Buyukcelebi, S., Bayrakci, M., Ertul, S., Ersoz, M., Capan, R.: Fabrication of Langmuir–Blodgett thin films of calix[4]arenes and their gas sensing properties: investigation of upper rim para substituent effect. Sens. Actuator B 190, 502–511 (2014). doi: 10.1016/j.snb.2013.09.008 CrossRefGoogle Scholar
  102. 102.
    Ozmen, M., Ozbek, Z., Bayrakci, M., Ertul, S., Ersoz, M., Capan, R.: Preparation and gas sensing properties of Langmuir–Blodgett thin films of calix[n]arenes: investigation of cavity effect. Sens. Actuator B 195, 156–164 (2014). doi: 10.1016/j.snb.2014.01.041 CrossRefGoogle Scholar
  103. 103.
    Ozmen, M., Ozbek, Z., Bayrakci, M., Ertul, S., Ersoz, M., Capan, R.: Preparation of Langmuir–Blodgett thin films of calix[6]arenes and p-tert butyl group effect on their gas sensing properties. Appl. Surf. Sci. 359, 364–371 (2015). doi: 10.1016/j.apsusc.2015.10.141 CrossRefGoogle Scholar
  104. 104.
    Udachin, K.A., Enright, G.D., Ratcliffe, C.I., Ripmeester, J.A.: Locating dynamic species with X-ray crystallography and NMR spectroscopy: acetone in p-tert-butylcalix[4]arene. ChemPhysChem. 4(10), 1059–1064 (2003)CrossRefGoogle Scholar
  105. 105.
    Adams, J.E., Cox, J.R., Christiano, A.J., Deakyne, C.A.: Molecular dynamics of host-guest complexes of small gas molecules with calix[4]arenes. J. Phys. Chem. A 112(30), 6829–6839 (2008). doi: 10.1021/jp800492y CrossRefGoogle Scholar
  106. 106.
    Cao, Z., Murayama, K., Aoki, K.: Thickness-shear-mode acoustic wave sensor for acetone vapour coated with C-ethylcalix[4]resorcinarene and C–H π interactions as a molecular recognition mechanism. Anal. Chim. Acta 448(1–2), 47–59 (2001). doi: 10.1016/s0003-2670(01)01325-3 CrossRefGoogle Scholar
  107. 107.
    Rusanova, T.Y., Kalach, A.V., Rumyantseva, S.S., Shtykov, S.N., Ryzhkina, I.S.: Determination of volatile organic compounds using piezosensors modified with the Langmuir–Blodgett films of calix[4]resorcinarene. J. Anal. Chem 64(12), 1270–1274 (2009). doi: 10.1134/s1061934809120120 CrossRefGoogle Scholar
  108. 108.
    Rusanova, T.Y., Shtykov, S.N., Kalach, A.V.: Method of producing the sensitive layer of a piezoelectric quartz crystal sensor for detecting vapors of organic solvents. Application: RU, RU Patent 2008-137161, 2371839Google Scholar
  109. 109.
    Temel, F., Tabakci, M.: Calix[4]arene coated QCM sensors for detection of VOC emissions: methylene chloride sensing studies. Talanta 153, 221–227 (2016). doi: 10.1016/j.talanta.2016.03.026 CrossRefGoogle Scholar
  110. 110.
    Ying, M., Chunmeng, Y., Ke, L., Xiuqin, C., Shaofei, Z., Yu, F.: Surface chemically assembly of calix[4]arene and its utilization in the development of a fluorescence sensing film for THF. Imaging Sci. Photochem. 33(1), 67–76 (2015). doi: 10.7517/j.issn.1674-0475.2015.01.067 Google Scholar
  111. 111.
    Oueslati, I., Paixao, J.A., Shkurenko, A., Suwinska, K., Seixas de Melo, J.S., Batista de Carvalho, L.A.E.: Highly ordered luminescent calix[4]azacrown films showing an emission response selective to volatile tetrahydrofuran. J. Mater. Chem. C 2(42), 9012–9020 (2014). doi: 10.1039/C4TC01596G CrossRefGoogle Scholar
  112. 112.
    Arduini, A., Boldrini, D., Pochini, A., Secchi, A., Ungaro, R.: Selective calix[4]arene-based sensors for neutral organic analytes. In: Conference proceedings—Italian Physical Society, vol. 54 (SAA ‘96, National Meeting on Sensors for Advanced Applications, 1996), 131–137 (1997)Google Scholar
  113. 113.
    Dickert, F.L., Schuster, O.: Supramolecular detection of solvent vapors with calixarenes: mass-sensitive sensors, molecular mechanics and BET studies. Microchim. Acta 119(1–2), 55–62 (1995). doi: 10.1007/bf01244854 CrossRefGoogle Scholar
  114. 114.
    Kalchenko, V.I., Koshets, I.A., Matsas, E.P., Kopylov, O.N., Solovyov, A., Kazantseva, Z.I., Shirshov, Y.M.: Calixarene-based QCM sensors array and its response to volatile organic vapours. Mater. Sci. 20(3), 73–88 (2002)Google Scholar
  115. 115.
    Capan, R., Ozbek, Z., Goktas, H., Sen, S., Ince, F.G., Ozel, M.E., Stanciu, G.A., Davis, F.: Characterization of Langmuir–Blodgett films of a calix[8]arene and sensing properties towards volatile organic vapors. Sens. Actuator B 148(2), 358–365 (2010)CrossRefGoogle Scholar
  116. 116.
    Ince, F.G., Goktas, H., Ozbek, Z., Capan, R., Davis, F.: Plasma polymerized calixarene thin films and their sensing properties to chloroform vapors. Mol. Cryst. Liq. Cryst. 521, 104–111Google Scholar
  117. 117.
    Ozbek, Z., Capan, R., Goktas, H., Sen, S., Ince, F.G., Ozel, M.E., Davis, F.: Optical parameters of calix[4]arene films and their response to volatile organic vapors. Sens. Actuator B 158(1), 235–240 (2011). doi: 10.1016/j.snb.2011.06.011 CrossRefGoogle Scholar
  118. 118.
    Kimura, M., Yokokawa, M., Fukawa, T., Mihara, T.: Calixarenes for sensing materials, calixarene-based composite materials, and sensor elements having sensing films formed from the composite materials, and sensors. Application: JP, JP Patent 2009-236670, 2011084487Google Scholar
  119. 119.
    Munoz, S., Nakamoto, T., Moriizumi, T.: Comparisons between calixarene Langmuir–Blodgett and cast films in odor sensing systems. Sens. Mater. 11(7), 427–435 (1999)Google Scholar
  120. 120.
    Hassan, A.K., Ray, A.K., Nabok, A.V., Davis, F.: Spun films of novel calix[4]resorcinarene derivatives for benzene vapour sensing. Sens. Actuator B 77(3), 638–641 (2001)CrossRefGoogle Scholar
  121. 121.
    Topliss, S.M., James, S.W., Davis, F., Higson, S.P.J., Tatam, R.P.: Optical fiber long period grating based selective vapour sensing of volatile organic compounds. Sens. Actuator B 143(2), 629–634 (2010). doi: 10.1016/j.snb.2009.10.008 CrossRefGoogle Scholar
  122. 122.
    Zou, R.-F., Cao, Z., Zeng, J.-L., Dai, Y.-L., Sun, L.-X.: Characteristics and mechanism for host-guest recognition of isopropanol vapor based on calixarene supramolecules. Adv. Mater. Res. (2011). doi: 10.4028/ Google Scholar
  123. 123.
    Erdogan, M., Capan, R., Davis, F.: Swelling behaviour of calixarene film exposed to various organic vapours by surface plasmon resonance technique. Sens. Actuator B 145(1), 66–70 (2010). doi: 10.1016/j.snb.2009.11.017 CrossRefGoogle Scholar
  124. 124.
    Kimura, M., Yokokawa, M., Sato, S., Fukawa, T., Mihara, T.: Volatile organic compound sensing by gold nanoparticles capped with calix[4]arene ligand. Chem. Lett. 40(12), 1402–1404 (2011)CrossRefGoogle Scholar
  125. 125.
    Li, T., Cao, Z., Lin, H., Yang, C., Wang, K., Yu, R.: Host-guest recognition of anisole by thickness-shear mode acoustic wave sensor coated with calixarenes. Fenxi Ceshi Xuebao 18(1), 5–8 (1999)Google Scholar
  126. 126.
    Guo, W., Wang, J., Wang, C., He, J.Q., He, X.W., Cheng, J.P.: Design, synthesis, and enantiomeric recognition of dicyclodipeptide-bearing calix[4]arenes: a promising family for chiral gas sensor coatings. Tetrahedron Lett. 43(32), 5665–5667 (2002)CrossRefGoogle Scholar
  127. 127.
    Walte, A., Muenchmeyer, W.: Gas sensor with selective adsorbent. Application: WO, WO Patent 2002-DE1889, 2002095389Google Scholar
  128. 128.
    Shirshov, Y.M., Khoruzhenko, V.Y., Kostyukevych, K.V., Khristosenko, R.V., Samoylova, I.A., Pavluchenko, A.S., Samoylov, A.V., Ushenin, Y.V.: Analysis of some alcohol molecules based on the change of RGB components of interferentially colored calixarene films. Sens. Actuators B 122(2), 427–436 (2007). doi: 10.1016/j.snb.2006.06.020 CrossRefGoogle Scholar
  129. 129.
    Ting, Z., Zhong, C., Yun-Lin, D., Ting-Ting, C., Jing-Lin, H., Lei-Tao, X., Shu, L.: Sensing mechanism and application for recognition of ethanol by calixarene supramolecules based on hydrogen bonds interaction. Chem. J. Chin. Univ. 34(6), 1339–1346 (2013)Google Scholar
  130. 130.
    Kostyukevych, K.V., Khristosenko, R.V., Shirshov, Y.M., Kostyukevych, S.A., Samoylov, A.V., Kalchenko, V.I.: Multi-element gas sensor based on surface plasmon resonance: recognition of alcohols by using calixarene films. Semicond. Phys. Quant. Electron. Optoelectron. 14(3), 313–320 (2011)CrossRefGoogle Scholar
  131. 131.
    Nomura, E., Yamabe, M., Suruga, T., Tachibana, S.: Gas sensor for toxic volatile organic compounds. Application: WO, WO Patent 2009-JP65884, 2010027104Google Scholar
  132. 132.
    National Research Council.: Advancing the Science of Climate Change. The National Academies Press, Washington (2010)Google Scholar
  133. 133.
    Martini, M.: Water and fire: vulcano island from 1977 to 1991. Geochem. J. 27(4/5), 297–303 (1993)CrossRefGoogle Scholar
  134. 134.
    Cummins, E.P., Selfridge, A.C., Sporn, P.H., Sznajder, J.I., Taylor, C.T.: Carbon dioxide-sensing in organisms and its implications for human disease. Cell. Mol. Life Sci. 71(5), 831–845 (2014)CrossRefGoogle Scholar
  135. 135.
    Hafiz, S.M., Ritikos, R., Whitcher, T.J., Razib, N.M., Bien, D.C.S., Chanlek, N., Nakajima, H., Saisopa, T., Songsiriritthigul, P., Huang, N.M.: A practical carbon dioxide gas sensor using room-temperature hydrogen plasma reduced graphene oxide. Sens. Actuators B 193, 692–700 (2014)CrossRefGoogle Scholar
  136. 136.
    Møller, P., Christophersen, D.V., Jensen, D.M., Kermanizadeh, A., Roursgaard, M., Jacobsen, N.R., Hemmingsen, J.G., Danielsen, P.H., Cao, Y., Jantzen, K.: Role of oxidative stress in carbon nanotube-generated health effects. Arch. Toxicol. 88(11), 1939–1964 (2014)CrossRefGoogle Scholar
  137. 137.
    Shvedova, A., Castranova, V., Kisin, E., Schwegler-Berry, D., Murray, A., Gandelsman, V., Maynard, A., Baron, P.: Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J. Toxicol. Environ. Health A 66(20), 1909–1926 (2003). doi: 10.1080/713853956 CrossRefGoogle Scholar
  138. 138.
    Grasso, P., Sharratt, M., Davies, D.M., Irvine, D.: Neurophysiological and psychological disorders and occupational exposure to organic solvents. Food Chem. Toxicol. 22(10), 819–852 (1984). doi: 10.1016/0278-6915(84)90121-2 CrossRefGoogle Scholar
  139. 139.
    Wauchope, R.D., Buttler, T.M., Hornsby, A.G., Augustijn-Beckers, P.W.M., Burt, J.P.: The SCS/ARS/CES Pesticide Properties Database for Environmental Decision-Making. In: Ware, G. (ed.) Reviews of Environmental Contamination and Toxicology, vol. 123, pp. 1–155. Springer, New York (1992)CrossRefGoogle Scholar
  140. 140.
    Mermer, O., Okur, S., Sumer, F., Ozbek, C., Sayin, S., Yilmaz, M.: Gas sensing properties of carbon nanotubes modified with calixarene molecules measured by QCM techniques. Acta Phys. Pol. A 121(1), 240–242 (2012)CrossRefGoogle Scholar
  141. 141.
    Ananchenko Gennady, S., Moudrakovski Igor, L., Coleman Anthony, W., Ripmeester John, A.: A channel-free soft-walled capsular calixarene solid for gas adsorption. Angew. Chem. Int. Ed. 47(30), 5616–5618 (2008)CrossRefGoogle Scholar
  142. 142.
    Sayin, S., Ozbek, C., Okur, S., Yilmaz, M.: Preparation of the ferrocene-substituted 1,3-distal p-tert-butylcalix[4]arene based QCM sensors array and utilization of its gas-sensing affinities. J. Organomet. Chem. 771(0), 9–13 (2014). doi: 10.1016/j.jorganchem.2014.06.004 CrossRefGoogle Scholar
  143. 143.
    Daschbach, J.L., Sun, X., Chang, T.-M., Thallapally, P.K., McGrail, B.P., Dang, L.X.: Computational studies of load-dependent guest dynamics and free energies of inclusion for CO2 in low-Density p-tert-butylcalix[4]arene at loadings up to 2:1. J. Phys. Chem. A 113(14), 3369–3374 (2009)CrossRefGoogle Scholar
  144. 144.
    Hussain, A., Farrukh, S., Minhas, F.T.: Two-stage membrane system for post-combustion CO2 capture application. Energy Fuels 29(10), 6664–6669 (2015). doi: 10.1021/acs.energyfuels.5b01464 CrossRefGoogle Scholar
  145. 145.
    Özbek, C., Okur, S., Mermer, Ö., Kurt, M., Sayın, S., Yılmaz, M.: Effect of Fe doping on the CO gas sensing of functional calixarene molecules measured with quartz crystal microbalance technique. Sens. Actuator B 215, 464–470 (2015). doi: 10.1016/j.snb.2015.04.004 CrossRefGoogle Scholar
  146. 146.
    Hult, E.L., Willem, H., Price, P.N., Hotchi, T., Russell, M.L., Singer, B.C.: Formaldehyde and acetaldehyde exposure mitigation in US residences: in-home measurements of ventilation control and source control. Indoor Air (2014). doi: 10.1111/ina.12160 Google Scholar
  147. 147.
    Lovreglio, P., Carrus, A., Iavicoli, S., Drago, I., Persechino, B., Soleo, L.: Indoor formaldehyde and acetaldehyde levels in the province of Bari, South Italy, and estimated health risk. J. Environ. Monit. 11(5), 955–961 (2009). doi: 10.1039/b819843h CrossRefGoogle Scholar
  148. 148.
    Bruce, N., Pope, D., Rehfuess, E., Balakrishnan, K., Adair-Rohani, H., Dora, C.: WHO indoor air quality guidelines on household fuel combustion: strategy implications of new evidence on interventions and exposure–risk functions. Atmos. Environ. 106, 451–457 (2015). doi: 10.1016/j.atmosenv.2014.08.064 CrossRefGoogle Scholar
  149. 149.
    Wang, Y.-H., Lee, C.-Y., Lin, C.-H., Fu, L.-M.: Enhanced sensing characteristics in MEMS-based formaldehyde gas sensors. Microsyst. Technol. 14(7), 995–1000 (2008). doi: 10.1007/s00542-007-0460-8 CrossRefGoogle Scholar
  150. 150.
    Zhang, L., Hu, J., Song, P., Qin, H., Liu, X., Jiang, M.: Formaldehyde-sensing characteristics of perovskite La0.68Pb0.32FeO3 nano-materials. Phys. B 370(1–4), 259–263 (2005). doi: 10.1016/j.physb.2005.09.020 CrossRefGoogle Scholar
  151. 151.
  152. 152.
    Yang, L., Cai, A., Luo, C., Liu, Z., Shangguan, W., Xi, T.: Performance analysis of a novel TiO2-coated foam-nickel PCO air purifier in HVAC systems. Sep. Purif. Technol. 68(2), 232–237 (2009). doi: 10.1016/j.seppur.2009.05.008 CrossRefGoogle Scholar
  153. 153.
    Itoh, T., Matsubara, I., Shin, W., Izu, N.: Synthesis and characterization of layered organic/inorganic hybrid thin films based on molybdenum trioxide with poly(N-methylaniline) for VOC sensor. Mater. Lett. 61(19–20), 4031–4034 (2007). doi: 10.1016/j.matlet.2007.01.012 CrossRefGoogle Scholar
  154. 154.
    Hu, J.-L., Zhou, T., Zhang, Y.-F., Wang, Z., Luo, D.-M., Cao, Z.: Detection of trace formaldehyde gas based on quartz crystal microbalance sensor in living environment. Adv. Mater. Res. (2011). doi: 10.4028/ Google Scholar
  155. 155.
    Zhou, L.: Progress and problems in hydrogen storage methods. Renew. Sust. Energ. Rev. 9(4), 395–408 (2005). doi: 10.1016/j.rser.2004.05.005 CrossRefGoogle Scholar
  156. 156.
    Frost, H., Snurr, R.Q.: Design Requirements for metal-organic frameworks as hydrogen storage materials. J. Phys. Chem. C 111(50), 18794–18803 (2007). doi: 10.1021/jp076657p CrossRefGoogle Scholar
  157. 157.
    Züttel, A.: Materials for hydrogen storage. Mater. Today 6(9), 24–33 (2003). doi: 10.1016/S1369-7021(03)00922-2 CrossRefGoogle Scholar
  158. 158.
    Gutsche, C.D.: Synthesis of calixarenes and thiacalixarenes. Calixarenes 2001, 1–25 (2001)Google Scholar
  159. 159.
    Casnati, A., Ungaro, R., Asfari, Z., Vicens, J.: Calixarenes. Kluwer Academic, Dordrecht (2001)Google Scholar
  160. 160.
    Brouwer, D.H., Moudrakovski, I.L., Udachin, K.A., Enright, G.D., Ripmeester, J.A.: Guest loading and multiple phases in single crystals of the van der Waals host p-tert-butylcalix[4]arene. Cryst. Growth Des. 8(6), 1878–1885 (2008)CrossRefGoogle Scholar
  161. 161.
    Enright, G.D., Udachin, K.A., Moudrakovski, I.L., Ripmeester, J.A.: Thermally programmable gas storage and release in single crystals of an organic van der Waals host. J. Am. Chem. Soc. 125(33), 9896–9897 (2003). doi: 10.1021/ja0351701 CrossRefGoogle Scholar
  162. 162.
    Gu, X., Zhang, L., Gong, X.A., Lau, W.M., Liu, Z.F.: Diffusion of vinyl bromide through the crystals of p-Bu-t-calix[4]arene. J. Phys. Chem. B 112(47), 14851–14856 (2008). doi: 10.1021/jp806778j CrossRefGoogle Scholar
  163. 163.
    Enright, G.D., Brouwer, E.B., Halchuk, P.A., Ooms, K.J., Ferguson, M.J., Udachin, K.A., Ripmeester, J.A.: Phase transformations in t-butylcalix[4]arene inclusion compounds at elevated temperatures. Acta Cryst. A 58(s1), c310 (2002). doi: 10.1107/S0108767302097386 CrossRefGoogle Scholar
  164. 164.
    Ananchenko, G.S., Udachin, K.A., Pojarova, M., Jebors, S., Coleman, A.W., Ripmeester, J.A.: A molecular turnstile in para-octanoylcalix[4]arene nanocapsules. Chem. Commun. (7), 707–709 (2007). doi: 10.1039/b613972h
  165. 165.
    Alavi, S., Ripmeester, J.A.: Simulations of p-tert-butylcalix[4]arene with multiple occupancies of small guest molecules. Chem. Eur. J. 14(6), 1965–1971 (2008). doi: 10.1002/chem.200701339 CrossRefGoogle Scholar
  166. 166.
    Alavi, S., Afagh, N.A., Ripmeester, J.A., Thompson, D.L.: Molecular dynamics simulations of p-tert-butylcalix[4]arene with small guest molecules. Chem. Eur. J. 12(20), 5231–5237 (2006)CrossRefGoogle Scholar
  167. 167.
    Daschbach, J.L., Thallapally, P.K., Atwood, J.L., McGrail, B.P., Dang, L.X.: Free energies of CO2/H2 capture by p-tert-butylcalix[4]arene: a molecular dynamics study. J. Chem. Phys. 127(10), 104703 (2007). doi: 10.1063/1.2768961 CrossRefGoogle Scholar
  168. 168.
    Alavi, S., Woo, T.K., Sirjoosingh, A., Lang, S., Moudrakovski, I., Ripmeester, J.A.: Hydrogen adsorption and diffusion in p-tert-butylcalix[4]arene: an experimental and molecular simulation study. Chem. Eur. J. 16(38), 11689–11696 (2010). doi: 10.1002/chem.201000589 CrossRefGoogle Scholar
  169. 169.
    Kane, C.M., Ugono, O., Barbour, L.J., Holman, K.T.: Many simple molecular cavitands are intrinsically porous (zero-dimensional pore) materials. Chem. Mater. 27(21), 7337–7354 (2015). doi: 10.1021/acs.chemmater.5b02972 CrossRefGoogle Scholar
  170. 170.
    Su, K., Jiang, F., Qian, J., Chen, L., Pang, J., Bawaked, S.M., Mokhtar, M., Al-Thabaiti, S.A., Hong, M.: Stepwise construction of extra-large heterometallic calixarene-based cages. Inorg. Chem. 54(7), 3183–3188 (2015). doi: 10.1021/ic502677g CrossRefGoogle Scholar
  171. 171.
    Yasin, F.M., Iyer, K.S., Raston, C.L.: Palladium nano-carbon-calixarene based devices for hydrogen sensing. New J. Chem. 37(10), 3289–3293 (2013). doi: 10.1039/c3nj00621b CrossRefGoogle Scholar
  172. 172.
    Chapala, P.P., Bermeshev, M.V., Starannikova, L.E., Shantarovich, V.P., Gavrilova, N.N., Avakyan, V.G., Filatova, M.P., Yampolskii, Y.P., Finkelshtein, E.S.: Gas-transport properties of new mixed matrix membranes based on addition poly(3-trimethylsilyltricyclononene-7) and substituted calixarenes. J. Membr. Sci. 474, 83–91 (2015). doi: 10.1016/j.memsci.2014.09.043 CrossRefGoogle Scholar
  173. 173.
    Chapala, P.P., Bermeshev, M.V., Starannikova, L.E., Gavrilova, N.N., Shantarovich, V.P., Filatova, M.P., Krut’ko, E.B., Yampolskii, Y.P., Finkelshtein, E.S.: New composites based on poly(3-trimethylsilyltricyclononene-7) and organic nature fillers (calixarenes & cyclodextrins). AIP Conf. Proc. 1599, 58–61 (2014). doi: 10.1063/1.4876777 CrossRefGoogle Scholar
  174. 174.
    Coletta, M., McLellan, R., Murphy, P., Leube, B.T., Sanz, S., Clowes, R., Gagnon, K.J., Teat, S.J., Cooper, A.I., Paterson, M.J., Brechin, E.K., Dalgarno, S.J.: Bis-calix[4]arenes: from ligand design to the directed assembly of a metal–organic trigonal antiprism. Chem. Eur. J. 22(26), 8791–8795 (2016). doi: 10.1002/chem.201600762 CrossRefGoogle Scholar
  175. 175.
    Leonova, L., Shmygleva, L., Ukshe, A., Levchenko, A., Chub, A., Dobrovolsky, Y.: Solid-state hydrogen sensors based on calixarene—12-phosphatotungstic acid composite electrolytes. Sens. Actuator B 230, 470–476 (2016). doi: 10.1016/j.snb.2016.02.083 CrossRefGoogle Scholar
  176. 176.
    Hayden, O., Latif, U., Dickert, F.L.: A mass-sensitive approach for the detection of anaesthetic xenon. Aust. J. Chem. 64(12), 1628–1632 (2011). doi: 10.1071/ch11267 CrossRefGoogle Scholar
  177. 177.
    Su, K., Jiang, F., Qian, J., Pang, J., Hu, F., Bawaked, S.M., Mokhtar, M., Al-Thabaiti, S.A., Hong, M.: Bridging different Co4-calix[4]arene building blocks into grids, cages and 2D polymers with chiral camphoric acid. CrystEngComm 17(8), 1750–1753 (2015). doi: 10.1039/C4CE02186J CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Satish Kumar
    • 1
  • Shashi Chawla
    • 2
  • Manchong Chinlun Zou
    • 1
  1. 1.Department of ChemistrySt. Stephen’s CollegeDelhiIndia
  2. 2.Department of Applied SciencesAmity School of Engineering and TechnologyNew DelhiIndia

Personalised recommendations