Advertisement

A theoretical study of atropisomerism in N-(2-methylphenyl)-N′-(2-methylphenyl) thiourea and its inclusion in the β-cyclodextrin

  • A. M. Touadjine
  • A. Mostefai
  • A. Rahmouni
  • S. Humbel
  • A. Krallafa
Original Article
  • 127 Downloads

Abstract

β-cyclodextrin and its derivatives form inclusion complexes with a wide variety of guest molecules, including isomers and enantiomers. The main purpose of the present theoretical investigation is to predict the enantio-discrimination of N-(2-methylphenyl)-N′-(2 methyl phenyl) thiourea and to study in details the inclusion process of the N-(2-methylphenyl)-N′-(2 methyl phenyl) thiourea with the β-cyclodextrin using static quantum calculations. The compound presents three pairs of atropisomers that can possibly be experimentally separated by inclusion within the cavity of the β-cyclodextrin. Therefore, it appears of interest to study, in the first part, the model compound, the so called N-(2-methylphenyl)-N′-(2-methylphenyl) thiourea 1. We were interested then in the identification of the possible conformers of this compound. All conformers were fully optimized at different levels of theory. The relative energies of all possible conformers are given and discussed. Our calculations showed, as expected, that the π-stacking conformer with respect to other structures is the most stable. In the second part, we were interested then to evaluate the host–guest complex stabilization through the formation of the inclusion compounds for the 1:1 association. The inclusion process pathways are described and the most stable structures of the different complexes are sought through a global search of the potential energy surface.

Graphical Abstract

Keywords

Thiourea β-Cyclodextrin Enantio-differentiation Inclusion process 

Notes

Acknowledgements

We acknowledge the University of Oran (Algeria) and the Aix-Marseille University, France for computer resources.

References

  1. 1.
    Armstrong, D.W., DeMond, W.: Cyclodextrin Bonded Phases For the Liquid Chromatographic Separation of Optical, Geometrical, and Structural Isomers. J. Chromatogr. Sci. 22, 411–416 (1984)CrossRefGoogle Scholar
  2. 2.
    Berthod, A., Jin, H.L., Beesley, T.E., Duncan, J.D., Armstrong, D.W.: Cyclodextrin chiral stationary phases for liquid chromatographic separations of drug stereoisomers. J Pharm Biomed Anal. 8(2), 123–130 (1990)CrossRefGoogle Scholar
  3. 3.
    Hinze H.L.: Applications of cyclodextrins in chromatographic separations and purification methods. Sep. Purif. Methods 10 (2), 159–237 (1981)CrossRefGoogle Scholar
  4. 4.
    Allouch A., El Hassan I., Abou Dalle A., El-Nakat H., El Omar F.: Inclusion complex of thiourea substrate with hydroxypropyl-ß-cyclodextrin. Chem. Sci. Trans. 2(2), 663–669 (2013)CrossRefGoogle Scholar
  5. 5.
    Pais, L.S., Loureiro, J.M., Rodrigues, A.E.: Modeling strategies for enantiomers separation by SMB chromatography. AlChE J. 44(3), 561–569 (1998)CrossRefGoogle Scholar
  6. 6.
    Loftsson, T., Brewster, M.E.: Pharmaceutical applications of cyclodextrins. 1. drug solubilization and stabilization. J. Pharm. Sci. 85(10), 1017–1025 (1996)CrossRefGoogle Scholar
  7. 7.
    Gellman, S.H.: Molecular recognition. Chem. Rev. 97, 1231–1232 (1997)CrossRefGoogle Scholar
  8. 8.
    Hamilton, J.A., Sabesan, M.N.: Structure of inclusion complexes of cyclomaltoheptaose (cycloheptaamylose): crystal structure of the benzocaine adduct. Carbohydr. Res. 102, 31 (1982)CrossRefGoogle Scholar
  9. 9.
    Klingert, B., Rihs, G.: Molecular encapsulation of transition-metal complexes in cyclodextrins. 1. Synthesis and X-ray crystal structure of [(η 5-C5H5)Fe(η 6-C6H6)]PF6·2α-CD·8H2O. Organometallics. 9(4), 1135–1141 (1990)CrossRefGoogle Scholar
  10. 10.
    Dick, D.L., Rao T.V.S., Sukumaran, D., Lawrence, D.S.: Molecular encapsulation: cyclodextrin-based analogues of heme-containing proteins. J. Am. Chem. Soc. 114(7), 2664–2669 (1992)CrossRefGoogle Scholar
  11. 11.
    Hof, H., Craig, S.L., Nuckolls, C., Rebek, J. Jr.: Molecular Encapsulation. Angew. Chem. Int. Ed. 41(9), 1488–1508 (2002)CrossRefGoogle Scholar
  12. 12.
    Palmer L.C., Rebek J. Jr.: The ins and outs of molecular encapsulation. Org. Biomol Chem. 2(21), 3051–3059 (2004).CrossRefGoogle Scholar
  13. 13.
    Veber, D.F., Johnson, S.R., Cheng, H.Y., Smith, B.R., Ward, K.W., Kopple, K.D.: Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 45(12), 2615–2623 (2002)CrossRefGoogle Scholar
  14. 14.
    Leeson, P.D., Springthorpe, B.: The influence of drug-like concepts on decision-making in medicinal chemistry. Nat. Rev. Drug Discov. 6(11), 881–890 (2007)CrossRefGoogle Scholar
  15. 15.
    Amidon, G.L., Lennernäs, H., Shah, V.P., Crison, J.R.: A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 12(3), 413–420 (1995)CrossRefGoogle Scholar
  16. 16.
    Chen, G., Jiang, M.: Cyclodextrin-based inclusion complexation bridgingsupramolecular chemistry and macromolecular self-assembly. Chem. Soc. Rev. 40(5), 2254–2266 (2011)CrossRefGoogle Scholar
  17. 17.
    Baboota, S., Agarwal, S.P.: Inclusion complexation of meloxicam with β-cyclodextrin. Indian J. Pharm. Sci. 64(4), 408–411 (2002)Google Scholar
  18. 18.
    Marques, H.C., Hadgraft, J., Kellaway, I.W.: Studies of cyclodextrin inclusion complexes. I. the salbutamol-cyclodextrin complex as studied by phase solubility and DSC. Int. J. Pharm. 63(3), 259–266 (1990)CrossRefGoogle Scholar
  19. 19.
    Blidi Boukamel N., Krallafa A., Bormann D., Caron L., Canipelle M., Tilloy S., Monflier E.: Theoretical Investigations of the Inclusion Processes of (4-tert-butylphenyl) (3-sulfonatophenyl) (phenyl) Phosphine in β-Cyclodextrin. J. Incl. Phen. and Macrocycl. Chem. 42, 269–274 (2002)CrossRefGoogle Scholar
  20. 20.
    Chekirou, N.L., Krallafa A., Bormann D.: Theoretical Investigations and Mechanisms of the Inclusion Processes of bi(3-sulfonatophenyl) (4-tert-butylphenyl) phosphine in the β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 53, 89–95 (2005)CrossRefGoogle Scholar
  21. 21.
    Chekirou, N.L., Benomrane, I., Lebsir, F., Krallafa, A.M.: Theoretical and experimental study of the tetracain/β-cyclodextrin inclusion complex. J. Incl. Phenom. Macrocycl. Chem. 74, 211–221 (2012)CrossRefGoogle Scholar
  22. 22.
    Szejtli, J.: Cyclodextrins and Their Inclusion Complexes (Cyclodextrine und ihre Einschlußkomplexe). Verlag der Ungarischen Akademie der Wissenschaften. Akadémiai Kiadó, Budapest. Starch-Stärke 34, 395–395 (1982)CrossRefGoogle Scholar
  23. 23.
    Rekharsky, M.V., Inoue, Y.: Complexation thermodynamics of cyclodextrins. Chem Rev. 98(5), 1875–1918 (1998)CrossRefGoogle Scholar
  24. 24.
    Del Valle, E.M.: Cyclodextrins and their uses: a review. Process Biochem. 39(9), 1033–1046 (2004)CrossRefGoogle Scholar
  25. 25.
    Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1753 (1998)CrossRefGoogle Scholar
  26. 26.
    Venkatachalam, T.K., Mao, C., Uckun, F.M.: Effect of stereochemistry on the anti-HIV activity of chiral thiourea compounds. Bioorg. Med. Chem. 12(15), 4275–4284 (2004)CrossRefGoogle Scholar
  27. 27.
    Dalko P.I., Moisan L.: In the golden age of organocatalysis. AngewChem Int. 43, 5138–5175 (2004)CrossRefGoogle Scholar
  28. 28.
    Fuerst, D.E., Jacobsen, E.N.: Thiourea-catalyzed enantioselective cyanosilylation of ketones. J. Am. Chem. Soc. 127(25), 8964–8965 (2005)CrossRefGoogle Scholar
  29. 29.
    Tsogoeva, S.B., Hately, M.J., Yalalov, D.A., Meindl, K., Weckbecker, C., Huthmacher, K.: Thiourea-based non-nucleoside inhibitors of HIV reverse transcriptase as bifunctional organocatalysts in the asymmetric Strecker synthesis. Bioorg. Med. Chem. 13, 5680–5685 (2005)CrossRefGoogle Scholar
  30. 30.
    Hoashi, Y., Yabuta, T., Yuan, P., Miyabe, H., Takemoto, Y.: Enantioselective tandem Michael reaction to nitroalkene catalyzed by bifunctional thiourea: total synthesis of (–)-epibatidine. Tetrahedron 62(2–3), 365–374 (2006)CrossRefGoogle Scholar
  31. 31.
    Joly, G.D., Jacobsen, E.N.: Thiourea-catalyzed enantioselective hydrophosphonylation of imines: practical access to enantiomerically enriched α-amino phosphonic acids. J. Am. Chem. Soc. 126, 4102–4103 (2004)CrossRefGoogle Scholar
  32. 32.
    Steele, R.M., Monti, C., Gennari, C., Piarulli, U., Andreoli, F., Vanthuyne, N., Roussel, C.: Enantioselective cyanosilylation of aldehydes catalysed by a diastereomeric mixture of atropisomeric thioureas. Tetrahedron Asymmetr. 17, 999–1006 (2006)CrossRefGoogle Scholar
  33. 33.
    Frisch M.J., Trucks G.W., Schlegel H.B. et al.: Gaussian 09. Gaussian Inc, Wallingford (2009)Google Scholar
  34. 34.
    Moller C., Plesset M.S.: Note on an approximation treatment for many-electron systems. Phy. Rev. 46, 618 (1934)CrossRefGoogle Scholar
  35. 35.
    Zhao, Y., Truhlar, D.G.: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120(1–3), 215–241 (2008)CrossRefGoogle Scholar
  36. 36.
    Grimme, S., Ehrlich, S., Goerigk, L.: Effect of the damping function in dispersion corrected density functional theory. J. Comp. Chem. 32, 1456–1465 (2011)CrossRefGoogle Scholar
  37. 37.
    Hohenstein, E.G., Chill, S.T., Sherrill, C.D.: Assessment of the performance of the M05–2X and M06–2X exchange-correlation functionals for noncovalent interactions in biomolecules. J. Chem. Theory Comput. 4(12), 1996–2000 (2008)CrossRefGoogle Scholar
  38. 38.
    Bryantsev V.S., Diallo M.S., van Duin A.C., Goddard III W.A.: Evaluation of B3LYP, X3LYP, and M06-Class Density functionals for predicting the binding energies of neutral, protonated, and deprotonated water clusters. J. Chemical Theory Comput., 5(4), 1016–1026 (2009)CrossRefGoogle Scholar
  39. 39.
    Hunter, C.A., Sanders, J.K.: The nature of π–π interactions. J. Am. Chem. Soc. 112(14), 5525–5534 (1990)CrossRefGoogle Scholar
  40. 40.
    Hobza, P., Selzle, H.L., Schlag, E.W.: Potential energy surface for the benzene dimer. Results of ab Initio CCSD(T) calculations show two nearly isoenergetic structures: t-shaped and parallel-displaced. J. Phys. Chem. 100(48), 18790–18794 (1996)CrossRefGoogle Scholar
  41. 41.
    Sinnokrot M.O., Sherrill C.D.J: Highly accurate coupled cluster potential energy curves for the benzene dimer: sandwich, t-shaped, and parallel-displaced configurations. Phys. Chem. A 108, 10200–10207 (2004)CrossRefGoogle Scholar
  42. 42.
    Pavlov, A., Mitrasinovic, P.M.: Theoretical insights into dispersion and hydrogen-bonding interactions in biomolecular systems. Curr. Org. Chem. 14(2), 129–137 (2010)CrossRefGoogle Scholar
  43. 43.
    Cozzi F., Ponzini F., Annunziata R., Cinquini M., Siegel J.S.: Polar interactions between stacked π systems in fluorinated 1,8-diarylnaphthalenes: importance of quadrupole moments in molecular recognition. Angew. Chem. Int Ed. Engl. 34(9), 1019–1020 (1995)CrossRefGoogle Scholar
  44. 44.
    Podeszwa R., Bukowski R. and Szalewicz K.J: Potential Energy Surface for the Benzene Dimer and Perturbational Analysis of π–π Interactions. Phys. Chem. A 110, 10345–10354 (2006)CrossRefGoogle Scholar
  45. 45.
    Cyranski, M.K.: Energetic Aspects of Cyclic Pi-Electron Delocalization: Evaluation of the Methods of Estimating Aromatic Stabilization Energies. Chem Rev. 105(10), 3773–3811 (2005)CrossRefGoogle Scholar
  46. 46.
    Schleyer P.V.R: Introduction: Delocalization-Pi and Sigma. Chem. Rev. 105(10), 3433–3435 (2005)CrossRefGoogle Scholar
  47. 47.
    Jug, K., Koester, A.M.: Influence of .sigma. and .pi. electrons on aromaticity. J. Am. Chem. Soc. 112(19), 6772–6777 (1990)CrossRefGoogle Scholar
  48. 48.
    Glukhovtsev M.: Aromaticity today: energetic and structural criteria. J. Chem. Educ. 74(1), 132 (1997)CrossRefGoogle Scholar
  49. 49.
    Katritzky, A. R., Karelson, M., Sild, S., Krygowski, T.M., Jug, K.: Aromaticity as a quantitative concept. 7. aromaticity reaffirmed as a multidimensional characteristic. J. Org. Chem. 63(15), 5228–5231 (1998)CrossRefGoogle Scholar
  50. 50.
    Hunter, C.A., Lawson, K.R., Perkins, J., Urch, C.J.: Aromatic interactions. J. Chem. Soc. 2(5), 651–669 (2001)Google Scholar
  51. 51.
    Brédas, J.L., Beljonne, D., Coropceanu, V., Cornil, J.: Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: a molecular picture. Chem. Rev. 104(11), 4971–5004 (2004)CrossRefGoogle Scholar
  52. 52.
    Hazra, P., Chakrabarty, D., Chakraborty, A., Sarkar, N.: Intramolecular charge transfer and solvation dynamics of Nile Red in the nanocavity of cyclodextrins. Chem. Phys. Lett. 388(1), 150–157 (2004)CrossRefGoogle Scholar
  53. 53.
    Kim, H. J., Heo, J., Jeon, W.S., Lee, E., Kim, J., Sakamoto, S., Kim, K.: Selective inclusion of a hetero-guest pair in a molecular host: formation of stable charge-transfer complexes in cucurbit uril. Angew. Chem. Int. Ed. 40(8), 1526–1529 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.LMMCUniversity of SaidaSaidaAlgeria
  2. 2.Aix Marseille UniversityMarseilleFrance
  3. 3.LCPM, Dpt of Chemistry, Faculty of SciencesUniversity of Oran 1Ahmed BenbellaAlgeria

Personalised recommendations