Advertisement

Macrocyclic [N5] transition metal complexes: synthesis, characterization and biological activities

  • Hanaa A. El-BoraeyEmail author
  • Mogda A. El-Salamony
  • Abla A. Hathout
Original Article

Abstract

Novel penta-azamacrocyclic 21-membered [N5] ligand [L] and its transition metal complexes with Co(II), Ni(II), Cu(II), Ru(III) and Pd(II) have been isolated and characterized. The mode of bonding and overall geometry of the complexes have been inferred through IR, MS, UV–Vis, EPR, 1H NMR spectral studies, molar conductivity, magnetic, thermal and microanalyses, On the basis of above studies, an octahedral geometry has been proposed for all complexes except Pd(II) chloride complex which adopt square planar geometry. The in vitro antitumor activity of the synthesized ligand and some selected complexes against human breast and human hepatocarcinoma cell lines (MCF-7) and (HePG2), respectively has been studied. The results show that the tested compounds are potent antitumor agents. Also the ligand and some selected complexes have been tested for their inhibitory effect on the growth of bacteria: Streptococcus pyogenes as Gram-positive bacteria and Escherichia coli as Gram-negative bacteria. The activity data show that most of the tested compounds exhibit remarkable antibacterial activity against these organisms.

Keywords

Novel penta-azamacrocycles Macrocyclic metal complexes Spectral studies Biological activity 

Supplementary material

10847_2016_649_MOESM1_ESM.docx (30 kb)
Supplementary material 1 (DOCX 30 kb)

References

  1. 1.
    Prakash, N.B.: Synthesis and studies of tetraaza macrocyclic complexes of transition metal Ions. J. Phys. Appl. Chem. 1(2), 17–21 (2014)Google Scholar
  2. 2.
    EL-Gammal, O.A., Bekheit, M.M., El-Brashy, S.A.: Synthesis, characterization and in vitro antimicrobial studies of Co(II), Ni(II) and Cu(II) complexes derived from macrocyclic compartmental ligand. Spectrochim. Acta A 137, 207–219 (2015)CrossRefGoogle Scholar
  3. 3.
    Chandra, S., Kumar, S.: Synthesis and spectral studies on mononuclear complexes of chromium(III) and manganese(II) with 12-membered tetradentate N2O2, N2S2 and N4 donor macrocyclic ligands. Transit. Met. Chem. 29, 269–275 (2004)CrossRefGoogle Scholar
  4. 4.
    Chandra, S., Gupta, R., Gupta, N., Bawa, S.S.: Biologically relevant macrocyclic complexes of copper spectral, magnetic, thermal and antibacterial approach. Transit. Met. Chem. 31, 147–151 (2006)CrossRefGoogle Scholar
  5. 5.
    Rani, S., Kumar, S., Chandra, S.: Spectroscopic and biological approach in the characterization of a novel 14-membered [N4] macrocyclic ligand and its Palladium(II), Platinum(II), Ruthenium(III) and Iridium(III) complexes. Spectrochim. Acta A 118, 244–250 (2014)CrossRefGoogle Scholar
  6. 6.
    Yernale, N.G., Mathada, M.B.H.: Synthesis, characterization, antimicrobial, DNA cleavage, and In Vitro cytotoxic studies of some Metal complexes of Schiff base ligand derived from thiazole and quinoline moiety. Bioinorg. Chem. 2014, 1–17 (2014)CrossRefGoogle Scholar
  7. 7.
    Shiekh, R.A., Rahman, I.A., Malik, M.A.: Synthesis, spectral, electrochemical and biological studies of nitrogen donor macrocyclic ligand and its transition metal complexes. Int. J. Electrochem. Sci. 7, 12829–12845 (2012)Google Scholar
  8. 8.
    Swamy, S.J., Pola, S.: Spectroscopic studies on Co(II), Ni(II), Cu(II) and Zn(II) complexes with N4-macrocylic ligands. Spectrochem. Acta A 70, 929–933 (2008)CrossRefGoogle Scholar
  9. 9.
    Ghamami, S., Lashgari, A., Ghahremani Gavineh Roudi, R.: Synthesis and characterization of two new hydrazide palladium complexes. Can. J. Basic Appl. Sci. 2(3), 76–80 (2014)Google Scholar
  10. 10.
    Chandra, S., Pipil, P.: Spectral studies of transition metal complexes with 25, 26 dioxo1,6,12,17,23,24 hexaazacyclohexacosa 1,5,12,16 tetraene macrocyclic ligand (L). J. Chem. Pharma. Res. 5(5), 99–104 (2013)Google Scholar
  11. 11.
    Singh, D.P., Kumar, K., Sharma, C.: Antimicrobial active macrocyclic complexes of Cr(III), Mn(III) and Fe(III) with their spectroscopic approach. Eur. J. Med. Chem. 44, 3299–3304 (2009)CrossRefGoogle Scholar
  12. 12.
    Wainwright, K.P.: Applications for polyaza macrocycles with nitrogen-attached pendant arms. Adv. Inorg. Chem. 52, 293–334 (2001)CrossRefGoogle Scholar
  13. 13.
    Swamy, S.J., Veerapratap, B., Nagaraju, D., Suresh, K., Someshwar, P.: Non-template synthesis of ‘N4’ di- and tetra-amide macrocyclic ligand with variable ring sizes. Tetrahedron 59, 10093–10096 (2003)CrossRefGoogle Scholar
  14. 14.
    Kedy, S., Almhna, N., Kandil, F.: Synthesis and characterization of new macrocyclic Schiff bases by the reaction of: 1,7-Bis (6-methoxy-2-formylphenyl)-1,7-dioxaheptane and their use in solvent extraction of metals. Arab. J. Chem. 8, 93–99 (2015)CrossRefGoogle Scholar
  15. 15.
    Fernandes, A.S., Cabral, M.F., Costa, J., Castro, M., Michael, R.D., Drew, G.B., Félix, V.: Two macrocyclic pentaaza compounds containing pyridine evaluated as novel chelating agents in copper(II) and nickel(II) overload. J. Inorg. Biochem. 105, 410–419 (2011)CrossRefGoogle Scholar
  16. 16.
    El-Boraey, H.A., Serag El-Din, A.A.: Transition metal complexes of a new 15-membered [N5] penta-azamacrocyclic ligand with their spectral and anticancer studies. Spectrochim. Acta A 132, 663–671 (2014)CrossRefGoogle Scholar
  17. 17.
    Chandra, S., Gupta, L.K.: Spectroscopic approach in characterization of chromium(III), manganese(II), iron(III) and copper(II) complexes with a nitrogen donor tetradentate, 14-membered azamacrocyclic ligand. Spectrochim. Acta A 61, 2139–2144 (2005)CrossRefGoogle Scholar
  18. 18.
    Timmons, J.C., Hubin, T.J.: Preparations and applications of synthetic linked azamacrocycle ligands and complexes. Coord. Chem. Rev. 254, 1661–1685 (2010)CrossRefGoogle Scholar
  19. 19.
    El-Boraey, H.A., Emam, S.M., Tolan, D.A., El-Nahas, A.M.: Structural studies and anticancer activity of a novel (N6O4) macrocyclic ligand and its Cu(II) complexes Spectrochim. Acta A 78, 360–370 (2011)CrossRefGoogle Scholar
  20. 20.
    El-Boraey, H.A.: Coordination behavior of tetraaza [N4] ligand towards Co(II), Ni(II), Cu(II), Cu(I) and Pd(II) complexes: Synthesis, spectroscopic Characterization and anticancer activity. Spectrochim. Acta A 97, 255–262 (2012)CrossRefGoogle Scholar
  21. 21.
    Kang, D., Seo, J., Lee, S.Y., Lee, J.Y., Choi, K.S., Lee, S.S.: First dicadmium(II) complex of tripodal amide ligand with one edge-sharing monocapped octahedral geometry. Inorg. Chem. 10, 1425–1428 (2007)Google Scholar
  22. 22.
    Soliman, A., El-Medani, S., Ali, O.: Thermal study of chromium and molybdenum complexes with some nitrogen and nitrogen-oxygen donor ligands. J. Therm. Anal. Calorim. 83(2), 385–392 (2006)CrossRefGoogle Scholar
  23. 23.
    Ajlouni, A.M., Taha, Z.A., Al-Hassan, K.A., Abu Anzeh, A.M.: Synthesis, characterization, luminescence properties and antioxidant activity of Ln(III) complexes with a new aryl amide bridging ligand. J. Lumin. 132, 1357–1363 (2012)CrossRefGoogle Scholar
  24. 24.
    Tyagi, M., Chandra, S., Akhtar, J., Chand, D.: Macrocyclic Schiff base ligand and its complexes: inhibitory activity against plantpathogenic fungi. Spectrochim. Acta A 118, 1056–1061 (2014)CrossRefGoogle Scholar
  25. 25.
    Abou-Hussein, A.A., Linert, W.: Synthesis, spectroscopic studies and inhibitory activity against bacteria and fungi of acyclic and macrocyclic transition metal complexes containing a triamine coumarine Schiff base ligand. Spectrochim. Acta A 141, 223–232 (2015)CrossRefGoogle Scholar
  26. 26.
    Chandra, S., Qanungo, K., Sharma, S.K.: Synthesis, molecular modeling and spectroscopic characterization of nickel(II), copper(II), complexes of new 16-membered mixed-donor macrocyclic Schiff base ligand incorporating a pendant alcohol function. Spectrochim. Acta A 79, 1326–1330 (2011)CrossRefGoogle Scholar
  27. 27.
    Chandra, S., Sharma, A.K.: Nickel(II) and copper(II) complexes with Schiff base ligand 2,6-diacetylpyridine bis(carbohydrazone): synthesis and IR, mass,1H NMR, electronic and EPR spectral studies. Spectrochim. Acta A 72, 851–857 (2009)CrossRefGoogle Scholar
  28. 28.
    Chandra, S., Ruchi, S.: Synthesis, spectroscopic characterization, molecular modeling and antimicrobial activities of Mn(II), Co(II), Ni(II), Cu(II) complexes containing the tetradentate aza Schiff base ligand. Spectrochim. Acta A 103, 338–348 (2013)CrossRefGoogle Scholar
  29. 29.
    El-Gammal, H.A., El-Boraey, O.A.: New 15-membered tetraaza (N4) macrocyclic ligand and its transition metal complexes: Spectral, magnetic, thermal and anticancer activity. Spectrochim. Acta A 138, 553–562 (2015)CrossRefGoogle Scholar
  30. 30.
    Skehan, P., Storeng, R., Scudiero, D., Monks, A., Mahon, J.M., Vistica, D., Warren, J.T., Bokesch, H., Kenney, S., Boyd, M.R.: New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 82, 1107–1112 (1990)CrossRefGoogle Scholar
  31. 31.
    Wikler, M.A., Cockerill, F. R., Bush, K., Dudley, M.N., Eliopoulos, G.M., Hardy, D.J., Hecht, D.W., Ferraro, M.J., Swenson, J.M., Hindler, J.F., Patel, J.B., Powell, M. , Turnidge, J.D., Weinstein, M.P., Zimmer, B.L.: Method for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, approved standard-eighth edition. M07-A8 CLSI: 940 West Valley Road,Suite 1400, Wayne, Pennsylvania 29(2), 1087–1898 (2009) USA; ISBN: 1-56238-689-1Google Scholar
  32. 32.
    Bayoumi, H.A., Alaghaz, A.M.A., Aljahdali, M.S.: Cu(II), Ni(II), Co(II) and Cr(III) Complexes with N2O2-Chelating Schiff’s base ligand incorporating azo and sulfonamide moieties: spectroscopic, electrochemical behavior and thermal decomposition studies. Int. J. Electrochem Sci. 8, 9399–9413 (2013)Google Scholar
  33. 33.
    El-Asmy, A.A., Al-Abdeen, A.Z., El-Maaty, W.M., Mostafa, M.M.: Synthesis and spectroscopic studies of 2,5-hexanedione bis(isonicotinylhydrazone) and its first raw transition metal complexes. Spectrochim. Acta A 75, 1516–1522 (2010)CrossRefGoogle Scholar
  34. 34.
    Chandra, S., Gupta, L.K.: Mass, EPR, IR and electronic spectroscopic studies on newly synthesized macrocyclic ligand and its transition metal complexes. Spectrochim. Acta A 62, 1125–1130 (2005)CrossRefGoogle Scholar
  35. 35.
    Masoud, M.S., Khalil, E.A., Hindawy, A.M., Ali, A.E., Mohamed, E.F.: Spectroscopic studies on some azo compounds and their cobalt, copper and nickel complexes. Spectrochim. Acta A 60, 2807–2817 (2004)CrossRefGoogle Scholar
  36. 36.
    Mohamed, G.G., Ibrahim, N.A., Attia, H.A.E.: Spectroscopic studies on some azo compounds and their cobalt, copper and nickel complexes. Spectrochim. Acta A 72, 610–615 (2009)CrossRefGoogle Scholar
  37. 37.
    Jayaseelan, P., Prasad, S., Vedanayaki, S., Rajavel, R.: Synthesis, characterization, anti-microbial, DNA binding and cleavage studies of Schiff base metal complexes. Arab. J. Chem. (2011). doi: 10.1016/j.arabjc.2011.07.029 Google Scholar
  38. 38.
    Abd El-halim, H.F., Omar, M.M., Mohamed, G.G.: Synthesis, structural, thermal studies and biological activity of a tridentate Schiff base ligand and their transition metal complexes. Spectrochim. Acta A 78, 36–44 (2011)CrossRefGoogle Scholar
  39. 39.
    Venkatachalam, G., Ramesh, R.: Ruthenium(III) bis-bidentate Schiff base complexes mediated transfer hydrogenation of imines. Inorg. Chem. Commun. 9, 703–707 (2006)CrossRefGoogle Scholar
  40. 40.
    Geeta, B., Shravankumar, K., Muralidhar Reddy, P., Ravikrishna, E., Sarangapani, M., Krishna Reddya, K., Ravinder, V.: Binuclear cobalt(II), nickel(II), copper(II) and palladium(II) complexes of a new Schiff-base as ligand: Synthesis, structural characterization, and antibacterial activity. Spectrochim. Acta A 77, 911–915 (2010)CrossRefGoogle Scholar
  41. 41.
    Gurumoorthy, P., Ravichandran, J., Karthikeyan, N., Palani, P., Kalilur Rahiman, A.: Template synthesis of polyaza macrocyclic copper(II) and nickel(II) complexes: spectral characterization and antimicrobial studies. Bull. Korean Chem. Soc. 33(7), 2279–2286 (2012)CrossRefGoogle Scholar
  42. 42.
    Kavitha, N., Anantha Lakshmi, P.V.: Synthesis, characterization and thermogravimetric analysis of Co(II), Ni(II), Cu(II) and Zn(II) complexes supported by ONNO tetradentate Schiff base ligand derived from hydrazino benzoxazine. J. Saudi Chem. Soc. (2015). doi: 10.1016/j.jscs.2015.01.003 Google Scholar
  43. 43.
    Kivelson, D., Neiman, R.: ESR line shapes in glasses of copper complexes. J. Chem. Phys. 35, 149–155 (1961)CrossRefGoogle Scholar
  44. 44.
    Hathaway, B.J., Billing, D.E.: The electronic properties and stereochemistry of mononuclear complexes of the copper(II) ion. Coord. Chem. Rev. 5, 143–207 (1970)CrossRefGoogle Scholar
  45. 45.
    Arish, D., Sivasankaran Nair, M.: Synthesis, characterization and biological studies of Co(II), Ni(II), Cu(II) and Zn(II) complexes with pyrral-L-histidinate. Arab. J. Chem. 5, 179–186 (2012)CrossRefGoogle Scholar
  46. 46.
    Osman, A.H.: Synthesis and characterization of cobalt(II) and nickel(II) complexes of some Schiff bases derived from 3-hydrazino-6-methyl[1,2,4] triazin-5(4H)one. Transit. Metal Chem. 31, 35–41 (2006)CrossRefGoogle Scholar
  47. 47.
    El-Boraey, H.A.: Structural and thermal studies of some aroylhydrazone Schiff’s base-transition metal complexes. J. Therm. Anal. Calorim. 81, 339–346 (2005)CrossRefGoogle Scholar
  48. 48.
    Emam, S.M., El Sayed, I.E., Nassar, N.: Transition metal complexes of neocryptolepine analogues. Part I: synthesis, spectroscopic characterization, and in vitro anticancer activity of copper(II) complexes. Spectrochim. Acta A 138, 942–953 (2015)CrossRefGoogle Scholar
  49. 49.
    Coats, A.W., Redfern, J.P.: Kinetic parameters from thermogravimetric data. Nature 201, 68–122 (1964)CrossRefGoogle Scholar
  50. 50.
    Horowitz, H.H., Metzger, G.: A New analysis of thermogravimetric traces. J. Anal. Chem. 35, 1464–1468 (1963)CrossRefGoogle Scholar
  51. 51.
    Sivakumar, P., Parthiban, K.S., Sivakumar, P., Vinoba, M., Renganathan, S.: Optimization of extraction process and kinetics of sterculia foetida Seed oil and its process augmentation for biodiesel production. Ind. Eng. Chem. Res. 52, 8992–8998 (2012)CrossRefGoogle Scholar
  52. 52.
    Borsato, D., Galvan, D., Pereira, J.L., Orives, J.R., Angilelli, K.G., Coppo, R.L.: Kinetic and thermodynamic parameters of biodiesel oxidation with synthetic antioxidants: simplex centroid mixture design. J. Braz. Chem. Soc. 25(11), 1984–1992 (2014)Google Scholar
  53. 53.
    Shier, W.T.: Mammalian cell culture on $5 a day: a laboratory manual of low cost methods. University of the Philippines, Los Banos (1991)Google Scholar
  54. 54.
    Chandra, S., Gupta, L.K.: Modern spectroscopic techniques in the characterization of Schiff base macrocyclic ligand and its complexes with transition. Spectrochim. Acta A 62, 307–312 (2005)CrossRefGoogle Scholar
  55. 55.
    EL-Asmy, A.A., Rakha, T.H., Abdel-Rhman, M.H., Hassanien, M.M., Al-Mola, A.S.: Synthesis, spectral, thermal and biological studies on N(-)(2,4-dinitro-phenyl)-2-mercaptoacetohydrazide and its metal complexes. Spctrochim. Acta A 136, 1718–1727 (2015)CrossRefGoogle Scholar
  56. 56.
    Gaber, M., El-Wakiel, N.A., El-Ghamry, H., Fathalla, S.K.: Ni(II), Pd(II) and Pt(II) complexes of (1H-1,2,4-triazole-3-ylimino)methyl]naphthalene-2-ol. Structural, spectroscopic, biological, cytotoxicity, antioxidant and DNA binding. Spectrochim. Acta A 139, 396–404 (2015)CrossRefGoogle Scholar
  57. 57.
    Zafar, H., Kareem, A., Sherwani, A., Mohammad, O., Ansari, M.A., Khan, H.M., Khan, T.A.: Synthesis and characterization of Schiff base octaazamacrocyclic complexes and their biological studies. J. Photochem. Photobiol., B 142, 8–19 (2015)CrossRefGoogle Scholar
  58. 58.
    Kavitha, P., Rama Chary, M., Singavarapu, B.V.V.A., Laxma Reddy, K.: Synthesis, characterization, biological activity and DNA cleavage studies of tridentate Schiff bases and their Co(II) complexes. J. Saudi Chem. Soc. 20, 69–80 (2016)CrossRefGoogle Scholar
  59. 59.
    Xiao-Yang, Q., Su-Zhi, L., An-Ran, S., Qian-Qian, L., Bin, Z.: Synthesis, crystal structure and cytotoxic activity of a zinc(II) complex of the Schiff base derived from S-benzyldithiocarbazate. Chin. J. Struct. Chem. 31(4), 555–561 (2012)Google Scholar
  60. 60.
    Tweedy, B.G.: Plant extracts with metal ions as potential antimicrobial agents. Phytopathology 55, 910–914 (1964)Google Scholar
  61. 61.
    Sonmez, M., Metin, C., Berber, I.: Synthesis, spectroscopic and biological studies on the new symmetric Schiff base derived from 2,6-diformyl-4-methylphenol with N-aminopyrimidine Eur. J. Med. Chem. 45, 1935–1940 (2010)CrossRefGoogle Scholar
  62. 62.
    Singh, D.P., Grover, V., Rathi, P., Jainb, K.: Trivalent transition metal complexes derived from carbohydrazide and dimedone. Arab. J. Chem. (2013). doi: 10.1016/j.arabjc.2013.07.004 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Hanaa A. El-Boraey
    • 1
    Email author
  • Mogda A. El-Salamony
    • 1
  • Abla A. Hathout
    • 1
  1. 1.Department of Chemistry, Faculty of ScienceMenoufia UniversityShebin El-KomEgypt

Personalised recommendations