Advertisement

Preparation, in-vitro release and antioxidant potential of formulation of apigenin with hydroxypropyl-β-cyclodextrin modified microemulsion

  • Xin Zhao
  • Zhongni Wang
  • Xuepeng Li
Original Article

Abstract

This work was carried out to exploit the feasibility of microemulsion combining apigenin/hydroxypropyl-β-cyclodextrin (API/HP-β-CD) complex as the carrier for improving the solubility of API, a bioactive flavonoid with various pharmacological activities. The API/HP-β-CD complex in solid state was prepared by solvent-freeze-drying method and characterized by FT-IR, PXRD and 1H NMR. To further increase the solubility of API, the complex of HP-β-CD with food-grade cosurfactant-free microemulsion was constructed. The aqueous solubility of API significantly increases in the HP-β-CD/Microemulsion complex, via solubilizing dominantly into the “palisade” layer, minor outer phase and inner core. The HP-β-CD modified microemulsion improves the cumulative percentage of API released. Moreover, API loaded in microemulsions with HP-β-CD had a higher antioxidant activity than that without HP-β-CD.

Keywords

Apigenin Hydroxypropyl-β-Cyclodextrin Microemulsion Antioxidant activity In vitro release 

Notes

Acknowledgments

Support of this work by the National Natural Science Foundation of China (31271933, 31071603) is gratefully acknowledged. The authors also thank Dr. F. Liu for help in UV–Vis spectroscopy analysis.

Supplementary material

10847_2016_644_MOESM1_ESM.docx (168 kb)
Supplementary material 1 (DOCX 168 kb)

References

  1. 1.
    Peterson, J., Dwyer, J.: Flavonoids: dietary occurrence and biochemical activity. Nutr. Res. 18(12), 1995–2018 (1998)CrossRefGoogle Scholar
  2. 2.
    Wu, Q., Yu, C., Yan, Y., Chen, J., Zhang, C., Wen, X.: Antiviral flavonoids from Mosla scabra. Fitoterapia 81(5), 429–433 (2010). doi: 10.1016/j.fitote.2009.12.005 CrossRefGoogle Scholar
  3. 3.
    Al Shaal, L., Shegokar, R., Muller, R.H.: Production and characterization of antioxidant apigenin nanocrystals as a novel UV skin protective formulation. Int. J. Pharm. 420(1), 133–140 (2011). doi: 10.1016/j.ijpharm.2011.08.018 CrossRefGoogle Scholar
  4. 4.
    Funakoshi-Tago, M., Nakamura, K., Tago, K., Mashino, T., Kasahara, T.: Anti-inflammatory activity of structurally related flavonoids, apigenin luteolin and fisetin. Int. Immunopharmacol. 11(9), 1150–1159 (2011). doi: 10.1016/j.intimp.2011.03.012 CrossRefGoogle Scholar
  5. 5.
    Shukla, S., Gupta, S.: Apigenin: a promising molecule for cancer prevention. Pharm. Res. 27(6), 962–978 (2010). doi: 10.1007/s11095-010-0089-7 CrossRefGoogle Scholar
  6. 6.
    Way, T.D., Kao, M.C., Lin, J.K.: Apigenin induces apoptosis through proteasomal degradation of HER2/neu in HER2/neu-overexpressing breast cancer cells via the phosphatidylinositol 3-kinase/Akt-dependent pathway. J. Biol. Chem. 279(6), 4479–4489 (2004). doi: 10.1074/jbc.M305529200 CrossRefGoogle Scholar
  7. 7.
    Lee, W.J., Chen, W.K., Wang, C.J., Lin, W.L., Tseng, T.H.: Apigenin inhibits HGF-promoted invasive growth and metastasis involving blocking PI3 K/Akt pathway and β4 integrin function in MDA-MB-231 breast cancer cells. Toxicol. Appl. Pharmacol. 226(2), 178–191 (2008). doi: 10.1016/j.taap.2007.09.013 CrossRefGoogle Scholar
  8. 8.
    Salabat, M.R., Golkar, L., Ding, X.Z., Ujiki, M.B., Pelling, J.C., Bell, R.H., Adrian, T.E., Talamonti, M.S., Bentrem, D.J.: Apigenin causes growth arrest in pancreatic cancer cells through down-regulation of the replication inhibitor protein, geminin via both transcription and ubiquitin-mediated degradation. J. Am. Coll. Surg. 203(3), 85 (2006)CrossRefGoogle Scholar
  9. 9.
    Vargo, M.A., Voss, O.H., Poustka, F., Cardounel, A.J., Grotewold, E., Doseff, A.I.: Apigenin-induced-apoptosis is mediated by the activation of PKCδ and caspases in leukemia cells. Biochem. Pharmacol. 72(6), 681–692 (2006). doi: 10.1016/j.bcp.2006.06.010 CrossRefGoogle Scholar
  10. 10.
    Chen, D., Daniel, K.G., Chen, M.S., Kuhn, D.J., Landis-Piwowar, K.R., Dou, Q.P.: Dietary flavonoids as proteasome inhibitors and apoptosis inducers in human leukemia cells. Biochem. Pharmacol. 69(10), 1421–1432 (2005). doi: 10.1016/j.bcp.2005.02.022 CrossRefGoogle Scholar
  11. 11.
    Zhang, J., Liu, D., Huang, Y., Gao, Y., Qian, S.: Biopharmaceutics classification and intestinal absorption study of apigenin. Int. J. Pharm. 436(1–2), 311–317 (2012). doi: 10.1016/j.ijpharm.2012.07.002 CrossRefGoogle Scholar
  12. 12.
    Hu, M., Chen, J., Lin, H.: Metabolism of flavonoids via enteric recycling: mechanistic studies of disposition of apigenin in the Caco-2 cell culture model. J. Pharmacol. Exp. Ther. 307(1), 314–321 (2003). doi: 10.1124/jpet.103.053496 CrossRefGoogle Scholar
  13. 13.
    Szente, L., Szejtli, J.: Highly soluble cyclodextrin derivatives: chemistry, properties, and trends in development. Adv. Drug Deliv. Rev. 36(1), 17–28 (1999). doi: 10.1016/S0169-409X(98)00092-1 CrossRefGoogle Scholar
  14. 14.
    Li, J., Yu, K., Bai, J., Zhang, H., Chao, J.: Study and characterization of the antioxidant activity of the inclusion complex of apigenin with beta-cyclodextrin and HP-beta-cyclodextrin in solution. J. Investig. Biochem. 3(3), 107 (2014). doi: 10.5455/jib.20140905032504 CrossRefGoogle Scholar
  15. 15.
    Papay, Z.E., Sebestyen, Z., Ludanyi, K., Kallai, N., Balogh, E., Kosa, A., Somavarapu, S., Boddi, B., Antal, I.: Comparative evaluation of the effect of cyclodextrins and pH on aqueous solubility of apigenin. J. Pharm. Biomed. Anal. 117, 210–216 (2016). doi: 10.1016/j.jpba.2015.08.019 CrossRefGoogle Scholar
  16. 16.
    Hyunmyung, K., Hyun-Won, K., Seunho, J.: Aqueous solubility enhancement of some flavones by complexaton with cyclodextrins. Bull. Korean Chem. Soc. 29(3), 5 (2008)Google Scholar
  17. 17.
    Gould, S., Scott, R.C.: 2-Hydroxypropyl-β-cyclodextrin (HP-β-CD): a toxicology review. Food Chem. Toxicol. 43(10), 1451–1459 (2005). doi: 10.1016/j.fct.2005.03.007 CrossRefGoogle Scholar
  18. 18.
    Thomas, S., Vieira, C.S., Hass, M.A., Lopes, L.B.: Stability, cutaneous delivery, and antioxidant potential of a lipoic acid and α-tocopherol codrug incorporated in microemulsions. J. Pharm. Sci. 103(8), 2530–2538 (2014). doi: 10.1002/jps.24053 CrossRefGoogle Scholar
  19. 19.
    Ren, Q., Deng, C., Meng, L., Chen, Y., Chen, L., Sha, X., Fang, X.: In vitro, ex vivo, and in vivo evaluation of the effect of saturated fatty acid chain length on the transdermal behavior of ibuprofen-loaded microemulsions. J. Pharm. Sci. 103(6), 1680–1691 (2014). doi: 10.1002/jps.23958 CrossRefGoogle Scholar
  20. 20.
    Ge, S., Lin, Y., Lu, H., Li, Q., He, J., Chen, B., Wu, C., Xu, Y.: Percutaneous delivery of econazole using microemulsion as vehicle: formulation, evaluation and vesicle-skin interaction. Int. J. Pharm. 465(1–2), 120–131 (2014). doi: 10.1016/j.ijpharm.2014.02.012 CrossRefGoogle Scholar
  21. 21.
    Lin, C.C., Lin, H.Y., Chi, M.H., Shen, C.M., Chen, H.W., Yang, W.J., Lee, M.H.: Preparation of curcumin microemulsions with food-grade soybean oil/lecithin and their cytotoxicity on the HepG2 cell line. Food Chem. 154, 282–290 (2014). doi: 10.1016/j.foodchem.2014.01.012 CrossRefGoogle Scholar
  22. 22.
    Wu, H., Long, X., Yuan, F., Chen, L., Pan, S., Liu, Y., Stowell, Y., Li, X.: Combined use of phospholipid complexes and self-emulsifying microemulsions for improving the oral absorption of a BCS class IV compound, baicalin. Acta Pharm. Sin. B 4(3), 217–226 (2014). doi: 10.1016/j.apsb.2014.03.002 CrossRefGoogle Scholar
  23. 23.
    Dalmora, M.E.A., Oliveira, A.G.: Inclusion complex of piroxicam with β-cyclodextrin and incorporation in hexadecyltrimethylammonium bromide based microemulsion. Int. J. Pharm. 184(2), 157–164 (1999)CrossRefGoogle Scholar
  24. 24.
    Dalmora, M.E., Dalmora, S.L., Oliveira, A.G.: Inclusion complex of piroxicam with β-cyclodextrin and incorporation in cationic microemulsion. In vitro drug release and in vivo topical anti-inflammatory effect. Int. J. Pharm. 222(1), 45–55 (2001)CrossRefGoogle Scholar
  25. 25.
    Ventura, C.A., Giannone, I., Paolino, D., Pistara, V., Corsaro, A., Puglisi, G.: Preparation of celecoxib-dimethyl-β-cyclodextrin inclusion complex: characterization and in vitro permeation study. Eur. J. Med. Chem. 40(7), 624–631 (2005). doi: 10.1016/j.ejmech.2005.03.001 CrossRefGoogle Scholar
  26. 26.
    Wang, X., Luo, Z., Xiao, Z.: Preparation, characterization, and thermal stability of β-cyclodextrin/soybean lecithin inclusion complex. Carbohydr. Polym. 101, 1027–1032 (2014). doi: 10.1016/j.carbpol.2013.10.042 CrossRefGoogle Scholar
  27. 27.
    Higuchi, T., Connors, K.A.: Phase-solubility techniques. In: Reilly, C.N. (ed.) Advances in Analytical Chemistry and Instrumentation, pp. 117–212. Wiley, New York (1965)Google Scholar
  28. 28.
    Wang, Z., Guo, F., Lu, J., Wei, L., Liu, X.: Preparation and properties of Brij97-based curcumin-encapsulated O/W microemulsions. Adv. Mater. Res. 924, 10–17 (2014)CrossRefGoogle Scholar
  29. 29.
    Fan, J., Liu, F., Wang, Z.: Shear rheology and in vitro release kinetic study of apigenin from lyotropic liquid crystal. Int. J. Pharm. 497(1–2), 248–254 (2016). doi: 10.1016/j.ijpharm.2015.12.008 CrossRefGoogle Scholar
  30. 30.
    Qiu, N., Cheng, X., Wang, G., Wang, W., Wen, J., Zhang, Y., Song, H., Ma, L., Wei, Y., Peng, A., Chen, L.: Inclusion complex of barbigerone with hydroxypropyl-β-cyclodextrin: preparation and in vitro evaluation. Carbohydr. Polym. 101, 623–630 (2014). doi: 10.1016/j.carbpol.2013.09.035 CrossRefGoogle Scholar
  31. 31.
    Ma, S.X., Chen, W., Yang, X.D., Zhang, N., Wang, S.J., Liu, L., Yang, L.J.: Alpinetin/hydroxypropyl-β-cyclodextrin host-guest system: preparation, characterization, inclusion mode, solubilization and stability. J. Pharm. Biomed. Anal. 67–68, 193–200 (2012). doi: 10.1016/j.jpba.2012.04.038 CrossRefGoogle Scholar
  32. 32.
    Liu, M., Cao, W., Sun, Y., He, Z.: Preparation, characterization and in vivo evaluation of formulation of repaglinide with hydroxypropyl-β-cyclodextrin. Int. J. Pharm. 477(1–2), 159–166 (2014). doi: 10.1016/j.ijpharm.2014.10.038 CrossRefGoogle Scholar
  33. 33.
    Komiyama, M., Bender, M.: Importance of apolar binding in complex formation of cyclodextrins with adamantanecarboxylate. J. Am. Chem. Soc. 100, 2259–2260 (1978)CrossRefGoogle Scholar
  34. 34.
    Pawlikowska-Pawlega, B., Misiak, L.E., Zarzyka, B., Paduch, R., Gawron, A., Gruszecki, W.I.: FTIR, 1H NMR and EPR spectroscopy studies on the interaction of flavone apigenin with dipalmitoylphosphatidylcholine liposomes. Biochim. Biophys. Acta 1828(2), 518–527 (2013). doi: 10.1016/j.bbamem.2012.10.013 CrossRefGoogle Scholar
  35. 35.
    You, X., Xing, Q., Tuo, J., Song, W., Zeng, Y., Hu, H.: Optimizing surfactant content to improve oral bioavailability of ibuprofen in microemulsions: just enough or more than enough? Int. J. Pharm. 471(1–2), 276–284 (2014). doi: 10.1016/j.ijpharm.2014.05.031 CrossRefGoogle Scholar
  36. 36.
    Zhao, L., Zhang, L., Meng, L., Wang, J., Zhai, G.: Design and evaluation of a self-microemulsifying drug delivery system for apigenin. Drug Dev. Ind. Pharm. 39(5), 662–669 (2013). doi: 10.3109/03639045.2012.687378 CrossRefGoogle Scholar
  37. 37.
    Aloisio, C., de Oliveira, G.A., Longhi, M.: Cyclodextrin and meglumine-based microemulsions as a poorly water-soluble drug delivery system. J. Pharm. Sci. (2016). doi: 10.1016/j.xphs.2015.11.045 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of EducationShandong Normal UniversityJinanPeople’s Republic of China

Personalised recommendations