Influence of the substitution of β-cyclodextrins by pyridinium groups on the complexation of adamantane derivatives

  • Ines Béjaoui
  • Mondher Baâzaoui
  • Yves Chevalier
  • Noureddine Amdouni
  • Rafik Kalfat
  • Souhaira Hbaieb
Original Article

Abstract

A series of positively charged β-cyclodextrin derivatives have been synthesized by selective functionalization of β-cyclodextrin at the primary rim with pyridinium groups. Characterisation of the modified β-cyclodextrin was done by elementary analysis, FTIR, 1H and 13C NMR spectroscopy. The inclusion complexation of adamantane derivatives (Adamantan-1-ol: AdOH and Sodium adamantane-1-carboxylate: AdCOONa+) by the host β-cyclodextrin and its grafted pyridinium derivatives has been investigated using 1H NMR spectroscopy. The stoichiometry of the complexes was found to be in 1:1 (adamantane:β-cyclodextrin) ratio. 1H chemical shift changes of adamantane protons were used to calculate the apparent binding constants of the complexes. Two dimentional NOESY experiments were performed to allow the mode of binding. Mono- and per-charged β-cyclodextrin showed an enhancement of inclusion binding ability towards the sodium adamantane-1-carboxylate guest. The origin of the observed enhancement in the stability of the complexes was ascribed to electrostatic interaction between carboxylate ion and charged pyridinium groups. A simple thermodynamic model of the electrostatic contribution to the complexation is presented.

Keywords

Pyridinium-β-cyclodextrins Adamantane derivatives Inclusion complexes 1H NMR Apparent binding constant 

Supplementary material

10847_2016_643_MOESM1_ESM.docx (2.4 mb)
Supplementary material 1 (DOCX 2428 kb)

References

  1. 1.
    Szejtli, J.: Cyclodextrins and their inclusion complexes. Akademiai Kiado, Budapest (1982)Google Scholar
  2. 2.
    Loftsson, T., Duchêne, D.: Cyclodextrins and their pharmaceu-tical applications. Int. J. Pharm. 329, 1–11 (2007)CrossRefGoogle Scholar
  3. 3.
    Sumit, S.V., Apeksha, K., Vasanti, S., Atul, P.S.: Influence of auxiliary agents on solubility and dissolution profile of repaglinide with hydroxypropyl-β-cyclodextrin: inclusion complex formation and its solid-state characterization. J. Incl. Phenom. Macrocycl. Chem. 83, 239–250 (2015)CrossRefGoogle Scholar
  4. 4.
    Yutaka, I., Takashi, Y., Shota, W., Isamu, M., Ikuo, K.: Examination of intermolecular interaction as a result of cogrinding actarit and β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 78, 457–464 (2014)CrossRefGoogle Scholar
  5. 5.
    Ogawa, N., Takahashi, C., Yamamoto, H.: Physicochemical characterization of cyclodextrin-drug interactions in the solid state and the effect of water on these interactions. J. Pharm. Sci. 104(3), 942–954 (2015)CrossRefGoogle Scholar
  6. 6.
    Zhang, J.X., Ma, P.X.: Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Adv. Drug Deliv. Rev. 65(9), 1215–1233 (2013)CrossRefGoogle Scholar
  7. 7.
    French, D., Levine, M.L., Pazur, J.H., Norberg, E.: Studies on the Schardinger dextrins. The preparation and solubility characteristics of α-, β- and γ-dextrins. J. Am. Chem. Soc. 71, 353–358 (1949)CrossRefGoogle Scholar
  8. 8.
    Ashton, P.R., Boyd, S.E., Gattuso, G., Hartwell, E.Y., Koniger, R., Spencer, N., Stoddart, J.F.: A novel approach to the synthesis of some chemically-modified cyclodextrins. J. Org. Chem. 60, 3898–3903 (1995)CrossRefGoogle Scholar
  9. 9.
    Wenz, G.: Cyclodextrins as building blocks for supramolecular structures and functional units. Angew. Chem. Int. Ed. Engl. 33, 803–822 (1994)CrossRefGoogle Scholar
  10. 10.
    Zain, N.N.M., Raoov, M., Bakar, N.K.A., Mohamad, S.: Cyclodextrin modified ionic liquid material as a modifier for cloud point extraction of phenolic compounds using spectrophotometry. J. Incl. Phenom. Macrocycl. Chem. 84, 137–152 (2016)CrossRefGoogle Scholar
  11. 11.
    Hbaieb, S., Kalfat, R., Chevalier, Y., Amdouni, N., Parrot-Lopez, H.: Influence of the substitution of β–cyclodextrins by cationic groups on the complexation of organic anions. Mater. Sci. Eng. C 28, 697–704 (2008)CrossRefGoogle Scholar
  12. 12.
    Galaverna, G., Corradini, R., Dossena, A., Marcelli, R.: Histamine-modified cationic β-cyclodextrins as chiral selectors for the enantiomeric separation of hydroxy acids and carboxylic acids by capillary electrophoresis. Electrophoresis 20(13), 2619–2629 (1999)CrossRefGoogle Scholar
  13. 13.
    Frbdkric, L., Carole, G., Pierre, G., Youssef, B., Hervé, G.: Use of a zwitterionic cyclodextrin as a chiral agent for the separation of enantiomers by capillary electrophoresis. Electrophoresis 18, 891–896 (1997)CrossRefGoogle Scholar
  14. 14.
    Hansjorg, J., Markus, J., Volker, S.: Electrokinetic chromatography employing an anionic and a cationic β-cyclodextrin derivative. Electrophoresis 18, 897–904 (1997)CrossRefGoogle Scholar
  15. 15.
    Abdul, R.K., Peter, F., Keith, J.S., Valerian, T.D.: Methods for selective modifications of cyclodextrins. Chem. Rev. 98, 1977–1996 (1998)CrossRefGoogle Scholar
  16. 16.
    Zita, S., Ágnes, B.B., János, R.: pH-dependent complex formation of amino acids with β-cyclodextrin and quaternary ammonium β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 73, 199–210 (2012)CrossRefGoogle Scholar
  17. 17.
    Martin, P., Simona, H., Jindřich, J.: A complete series of 6-deoxy-monosubstituted tetraalkylammonium derivatives of α-, β-, and γ-cyclodextrin with 1, 2, and 3 permanentpositive charges. Beilstein J. Org. Chem. 10, 1390–1396 (2014)CrossRefGoogle Scholar
  18. 18.
    Daniel, G., Jorge, B., Maria, J.P., Mercedes, N., Wajih, A.: Host–guest complexation studied by fluorescence correlation spectroscopy: adamantane-cyclodextrin inclusion. Int. J. Mol. Sci. 11, 173–188 (2010)CrossRefGoogle Scholar
  19. 19.
    Gao, J., Guo, Z.K., Su, F.J., Gao, L., Pang, X.H., Cao, W., Du, B., Wei, Q.: Ultrasensitive electrochemical immunoassay for CEA through host–guest interaction of β-cyclodextrin functionalized graphene and Cu@Ag core–shell nanoparticles with adamantinemodified antibody. Biosens. Bioelectron. 63(15), 465–471 (2015)CrossRefGoogle Scholar
  20. 20.
    Shantanu, G.K., Zdenˇka, P., Michal, R., Lenka, D., Robert, V.: Adamantylated trisimidazolium-based tritopic guests and their binding properties towards cucurbit [7] uril and β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 84, 11–20 (2016)CrossRefGoogle Scholar
  21. 21.
    Keivan, S., Ellen, E.M., Mark, W., Lee, J.: Association constant of β-cyclodextrin with carboranes, adamantane, and their derivatives using displacement binding technique. J. Incl. Phenom. Macrocycl. Chem. 83, 159–166 (2015)CrossRefGoogle Scholar
  22. 22.
    John, S.W.: Medicinal properties of adamantane derivatives. J. Chem. Educ. 50(71), 780–781 (1973)Google Scholar
  23. 23.
    Agnieszka, L.C., Jerzy, S., Waclaw, K.: Comparative proton nuclear magnetic resonance studies of amantadine complexes formed in aqueous solutions with three major cyclodextrins. J. Pharm. Sci. 103, 274–282 (2014)CrossRefGoogle Scholar
  24. 24.
    Harries, D., Rau, D.C., Parsegian, V.A.: Solutes probe hydration in specific association of cyclodextrin and adamantane. J. Am. Chem. Soc. 127, 2184–2190 (2005)CrossRefGoogle Scholar
  25. 25.
    Ying-Ming, Z., Yong, C., Zhi-Qiang, L., Nan, L., Yu, L.: Quinolinotriazole-β-cyclodextrin and its adamantanecarboxylic acid complex as efficient water-soluble fluorescent Cd2+ sensors. Bioorg. Med. Chem. 18, 1415–1420 (2010)CrossRefGoogle Scholar
  26. 26.
    Birgit, B., Lennart, K., Coine, S.M.: 1H-NMR Studies of the inclusion complexes betweena-cyclodextrin and adamantane derivatives using both exchangeable hydroxy protons and non-exchangeable aliphatic protons. J. Incl. Phenom. Macrocycl. Chem. 50, 173–181 (2004)CrossRefGoogle Scholar
  27. 27.
    Yi-Che, S., Wan-Chun, C., Feng-Chih, C.: Preparation and characterization of polyseudorotaxanes based on adamantane-modified polybenzoxazines and β-cyclodextrin. Polymer 46, 1617–1623 (2005)CrossRefGoogle Scholar
  28. 28.
    Baâzaoui, M., Béjaoui, I., Kalfat, R., Amdouni, N., Hbaieb, S., Chevalier, Y.: Preparation and characterization of nanoparticles made fromamphiphilic mono and per-aminoalkyl-β-cyclodextrins. Colloid Surf. A 484, 365–376 (2015)CrossRefGoogle Scholar
  29. 29.
    Job, P.: Formation and stability of inorganic complexes in solution. Ann. Chim. 9, 113–203 (1928)Google Scholar
  30. 30.
    Petter, R.C., Salek, J.S., Sikoski, C.T., Kumaravel, G., Lin, F.T.: Cooperative binding by aggregated mono-6-(alky1amino)-(β-cyclodextrins). J. Am. Chem. Soc. 112, 3860–3868 (1990)CrossRefGoogle Scholar
  31. 31.
    Gadelle, A., Defaye, J.: Selective halogenation at primary positions of cyclomaltooligosaccharides and a synthesis of per-3,6-anhydro cyclomal-tooligosaccharides. Angew. Chem. Int. Ed. Engl. 30, 78–80 (1991)CrossRefGoogle Scholar
  32. 32.
    Artur, J.M.V., Olle, S.: The formation of host–guest complexes between surfactants and cyclodextrins. Adv. Colloid Interface Sci. 205, 156–176 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Ines Béjaoui
    • 1
    • 4
  • Mondher Baâzaoui
    • 1
    • 4
  • Yves Chevalier
    • 2
  • Noureddine Amdouni
    • 1
  • Rafik Kalfat
    • 3
  • Souhaira Hbaieb
    • 3
    • 5
  1. 1.UR Physico-Chimie des Matériaux SolidesFaculté des Sciences de TunisTunisTunisia
  2. 2.Laboratoire d’Automatique et de Génie des ProcédésUMR 5007 CNRS, Université de Lyon 1Villeurbanne CedexFrance
  3. 3.Laboratoire Matériaux, Traitement et AnalyseINRAP, Biotechpole Sidi-ThabetArianaTunisie
  4. 4.Faculté des sciences de BizerteBizerteTunisia
  5. 5.Faculté des Sciences de Tunis, Université Tunis El ManarTunisTunisie

Personalised recommendations